This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2023 CMIMC Integration Bee, 9

\[\int_{-1}^1 x^{2022}\cos\left(\tfrac \pi {12}-x\right)\sin\left(\tfrac \pi{12}+x\right)\,\mathrm dx\] [i]Proposed by Michael Duncan, Connor Gordon, and Vlad Oleksenko[/i]

2008 Grigore Moisil Intercounty, 3

Let $ f[0,\infty )\longrightarrow\mathbb{R} $ be a convex and differentiable function with $ f(0)=0. $ [b]a)[/b] Prove that $ \int_0^x f(t)dt\le \frac{x^2}{2}f'(x) , $ for any nonnegative $ x. $ [b]b)[/b] Determine $ f $ if the above inequality is actually an equality. [i]Dorin Andrica[/i] and [i]Mihai Piticari[/i]

2010 Today's Calculation Of Integral, 646

Evaluate \[\int_0^{\pi} a^x\cos bx\ dx,\ \int_0^{\pi} a^x\sin bx\ dx\ (a>0,\ a\neq 1,\ b\in{\mathbb{N^{+}}})\] Own

2013 Stanford Mathematics Tournament, 7

The function $f(x)$ has the property that, for some real positive constant $C$, the expression \[\frac{f^{(n)}(x)}{n+x+C}\] is independent of $n$ for all nonnegative integers $n$, provided that $n+x+C\neq 0$. Given that $f'(0)=1$ and $\int_{0}^{1}f(x) \, dx = C+(e-2)$, determine the value of $C$. Note: $f^{(n)}(x)$ is the $n$-th derivative of $f(x)$, and $f^{(0)}(x)$ is defined to be $f(x)$.

1949 Miklós Schweitzer, 2

Compute $ \lim_{n\rightarrow \infty} \int_{0}^{\pi} \frac {\sin{x}}{1 \plus{} \cos^2 nx}dx$ .

1995 Putnam, 2

For what pairs of positive real numbers $(a,b)$ does the improper integral $(1)$ converge? \begin{align}\int_{b}^{\infty}\left(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}\right)\,\mathrm{d}x \end{align}

2012 Today's Calculation Of Integral, 830

Find $\lim_{n\to\infty} \frac{1}{(\ln n)^2}\sum_{k=3}^n \frac{\ln k}{k}.$

2011 Today's Calculation Of Integral, 744

Let $a,\ b$ be real numbers. If $\int_0^3 (ax-b)^2dx\leq 3$ holds, then find the values of $a,\ b$ such that $\int_0^3 (x-3)(ax-b)dx$ is minimized.

1981 Putnam, B6

Let $C$ be a fixed unit circle in the cartesian plane. For any convex polygon $P$ , each of whose sides is tangent to $C$, let $N( P, h, k)$ be the number of points common to $P$ and the unit circle with center at $(h, k).$ Let $H(P)$ be the region of all points $(x, y)$ for which $N(P, x, y) \geq 1$ and $F(P)$ be the area of $H(P).$ Find the smallest number $u$ with $$ \frac{1}{F(P)} \int \int N(P,x,y)\;dx \;dy <u$$ for all polygons $P$, where the double integral is taken over $H(P).$

1994 AIME Problems, 10

In triangle $ABC,$ angle $C$ is a right angle and the altitude from $C$ meets $\overline{AB}$ at $D.$ The lengths of the sides of $\triangle ABC$ are integers, $BD=29^3,$ and $\cos B=m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2005 Today's Calculation Of Integral, 19

Calculate the following indefinite integrals. [1] $\int \tan ^ 3 x dx$ [2] $\int a^{mx+n}dx\ (a>0,a\neq 1, mn\neq 0)$ [3] $\int \cos ^ 5 x dx$ [4] $\int \sin ^ 2 x\cos ^ 3 x dx$ [5]$ \int \frac{dx}{\sin x}$

2010 Today's Calculation Of Integral, 621

Find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^n k\ln \left(\frac{n^2+(k-1)^2}{n^2+k^2}\right).$ [i]2010 Yokohama National University entrance exam/Engineering, 2nd exam[/i]

2009 Today's Calculation Of Integral, 413

Find the maximum and minimum value of $ F(x) \equal{} \frac {1}{2}x \plus{} \int_0^x (t \minus{} x)\sin t\ dt$ for $ 0\leq x\leq \pi$.

1977 Miklós Schweitzer, 9

Suppose that the components of he vector $ \textbf{u}=(u_0,\ldots,u_n)$ are real functions defined on the closed interval $ [a,b]$ with the property that every nontrivial linear combination of them has at most $ n$ zeros in $ [a,b]$. Prove that if $ \sigma$ is an increasing function on $ [a,b]$ and the rank of the operator \[ A(f)= \int_{a}^b \textbf{u}(x)f(x)d\sigma(x), \;f \in C[a,b]\ ,\] is $ r \leq n$, then $ \sigma$ has exactly $ r$ points of increase. [i]E. Gesztelyi[/i]

2000 National High School Mathematics League, 5

The shortest distance from an integral point to line $y=\frac{5}{3}x+\frac{4}{5}$ is $\text{(A)}\frac{\sqrt{34}}{170}\qquad\text{(B)}\frac{\sqrt{34}}{85}\qquad\text{(C)}\frac{1}{20}\qquad\text{(D)}\frac{1}{30}$

2025 VJIMC, 3

Evaluate the integral $\int_0^{\infty} \frac{\log(x+2)}{x^2+3x+2}\mathrm{d}x$.

2012 Romania National Olympiad, 4

[color=darkred]Find all differentiable functions $f\colon [0,\infty)\to [0,\infty)$ for which $f(0)=0$ and $f^{\prime}(x^2)=f(x)$ for any $x\in [0,\infty)$ .[/color]

2009 Today's Calculation Of Integral, 516

Let $ f(x)\equal{}\frac{1}{\sin x\sqrt{1\minus{}\cos x}}\ (0<x<\pi)$. (1) Find the local minimum value of $ f(x)$. (2) Evaluate $ \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} f(x)\ dx$.

2013 Stanford Mathematics Tournament, 4

Evaluate $\int_{0}^{4}e^{\sqrt{x}} \, dx$.

1966 Miklós Schweitzer, 4

Let $ I$ be an ideal of the ring $\mathbb{Z}\left[x\right]$ of all polynomials with integer coefficients such that a) the elements of $ I$ do not have a common divisor of degree greater than $ 0$, and b) $ I$ contains of a polynomial with constant term $ 1$. Prove that $ I$ contains the polynomial $ 1 + x + x^2 + ... + x^{r-1}$ for some natural number $ r$. [i]Gy. Szekeres[/i]

PEN K Problems, 26

The function $f: \mathbb{N}\to\mathbb{N}_{0}$ satisfies for all $m,n\in\mathbb{N}$: \[f(m+n)-f(m)-f(n)=0\text{ or }1, \; f(2)=0, \; f(3)>0, \; \text{ and }f(9999)=3333.\] Determine $f(1982)$.

2010 Today's Calculation Of Integral, 591

Let $ a,\ b,\ c$ be real numbers such that $ a\geq b\geq c\geq 1$. Prove the following inequality: \[ \int_0^1 \{(1\minus{}ax)^3\plus{}(1\minus{}bx)^3\plus{}(1\minus{}cx)^3\minus{}3x\}\ dx\geq ab\plus{}bc\plus{}ca\minus{}\frac 32(a\plus{}b\plus{}c)\minus{}\frac 34abc.\]

1969 Miklós Schweitzer, 8

Let $ f$ and $ g$ be continuous positive functions defined on the interval $ [0, +\infty)$, and let $ E \subset[0,+\infty)$ be a set of positive measure. Prove that the range of the function defined on $ E \times E$ by the relation \[ F(x,y)= %Error. "dispalymath" is a bad command. \int_0^xf(t)dt+ %Error. "dispalymath" is a bad command. \int_0^y g(t)dt\] has a nonvoid interior. [i]L. Losonczi[/i]

1975 IMO Shortlist, 3

Find the integer represented by $\left[ \sum_{n=1}^{10^9} n^{-2/3} \right] $. Here $[x]$ denotes the greatest integer less than or equal to $x.$

2007 Today's Calculation Of Integral, 236

Let $a$ be a positive constant. Evaluate the following definite integrals $A,\ B$. \[A=\int_0^{\pi} e^{-ax}\sin ^ 2 x\ dx,\ B=\int_0^{\pi} e^{-ax}\cos ^ 2 x\ dx\]. [i]1998 Shinsyu University entrance exam/Textile Science[/i]