This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2012 Today's Calculation Of Integral, 836

Evaluate $\int_0^{\pi} e^{\sin x}\cos ^ 2(\sin x )\cos x\ dx$.

2005 Today's Calculation Of Integral, 86

Prove \[\left[\int_\pi^\infty \frac{\cos x}{x}\ dx\right]^2< \frac{1}{{\pi}^2}\]

1995 Miklós Schweitzer, 2

Given $f,g\in L^1[0,1]$ and $\int_0^1 f = \int_0^1 g=1$, prove that there exists an interval I st $\int_I f = \int_I g=\frac12$.

2005 Today's Calculation Of Integral, 55

Evaluate \[\lim_{n\to\infty} n\int_0^1 (1+x)^{-n-1}e^{x^2}\ dx\ \ ( n=1,2,\cdots)\]

2011 Today's Calculation Of Integral, 696

Let $P(x),\ Q(x)$ be polynomials such that : \[\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2.\] Find the maximum and the minimum value of $\int_0^2 P(x)Q(x)dx$.

2012 Today's Calculation Of Integral, 834

Find the maximum and minimum areas of the region enclosed by the curve $y=|x|e^{|x|}$ and the line $y=a\ (0\leq a\leq e)$ at $[-1,\ 1]$.

2003 AMC 12-AHSME, 15

A semicircle of diameter $ 1$ sits at the top of a semicircle of diameter $ 2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune. [asy]unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); filldraw(Circle((0,.866),.5),grey,black); label("1",(0,.866),S); filldraw(Circle((0,0),1),white,black); draw((-.5,.866)--(.5,.866),linetype("4 4")); clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle); draw((-1,0)--(1,0)); label("2",(0,0),S);[/asy]$ \textbf{(A)}\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad \textbf{(B)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad \textbf{(C)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad\textbf{(D)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi$ $ \textbf{(E)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi$

2005 Today's Calculation Of Integral, 26

Evaluate \[{{\int_{e^{e^{e}}}^{e^{e^{e^{e}}}}} \frac{dx}{x\ln x\cdot \ln (\ln x)\cdot \ln \{\ln (\ln x)\}}}\]

1996 Putnam, 2

Prove the inequality for all positive integer $n$ : \[ \left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}}<1\cdot 3\cdot 5\cdots (2n-1)<\left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}} \]

2020 Jozsef Wildt International Math Competition, W32

Compute the quadruple integral $$A=\frac1{\pi^2}\int_{[0,1]^2\times[-\pi,\pi]^2}ab\sqrt{a^2+b^2-2ab\cos(x-y)}dadbdxdy$$ [i]Proposed by Moubinool Omarjee[/i]

2002 Tournament Of Towns, 1

In a triangle $ABC$ it is given $\tan A,\tan B,\tan C$ are integers. Find their values.

1969 Putnam, A4

Show that $$ \int_{0}^{1} x^{x} \, dx = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^n }.$$

1964 Miklós Schweitzer, 10

Let $ \varepsilon_1,\varepsilon_2,...,\varepsilon_{2n}$ be independent random variables such that $ P(\varepsilon_i\equal{}1)\equal{}P(\varepsilon_i\equal{}\minus{}1)\equal{}\frac 12$ for all $ i$, and define $ S_k\equal{}\sum_{i\equal{}1}^k \varepsilon_i, \;1\leq k \leq 2n$. Let $ N_{2n}$ denote the number of integers $ k\in [2,2n]$ such that either $ S_k>0$, or $ S_k\equal{}0$ and $ S_{k\minus{}1}>0$. Compute the variance of $ N_{2n}$.

2024 CMIMC Integration Bee, 4

\[\int_0^1 (x^6+6x^5+15x^4+15x^2+6x+1)\mathrm dx\] [i]Proposed by Robert Trosten[/i]

2022 JHMT HS, 1

Compute the value of \[ \frac{d}{dx}\int_{1}^{10} x^3\,dx. \]

2013 Today's Calculation Of Integral, 890

A function $f_n(x)\ (n=1,\ 2,\ \cdots)$ is defined by $f_1(x)=x$ and \[f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t}dt\ (n=2,\ 3,\ \cdots)\]. Find $f_n(x)$.

2009 Today's Calculation Of Integral, 510

(1) Evaluate $ \int_0^{\frac{\pi}{2}} (x\cos x\plus{}\sin ^ 2 x)\sin x\ dx$. (2) For $ f(x)\equal{}\int_0^x e^t\sin (x\minus{}t)\ dt$, find $ f''(x)\plus{}f(x)$.

1976 Miklós Schweitzer, 4

Let $ \mathbb{Z}$ be the ring of rational integers. Construct an integral domain $ I$ satisfying the following conditions: a)$ \mathbb{Z} \varsubsetneqq I$; b) no element of $ I \minus{} \mathbb{Z}$ (only in $ I$) is algebraic over $ \mathbb{Z}$ (that is, not a root of a polynomial with coefficients in $ \mathbb{Z}$); c) $ I$ only has trivial endomorphisms. [i]E. Fried[/i]

2003 Alexandru Myller, 2

Calculate $ \int_0^{2\pi }\prod_{i=1}^{2002} cos^i (it) dt. $ [i]Dorin Andrica[/i]

2005 Today's Calculation Of Integral, 21

[1] Tokyo Univ. of Science: $\int \frac{\ln x}{(x+1)^2}dx$ [2] Saitama Univ.: $\int \frac{5}{3\sin x+4\cos x}dx$ [3] Yokohama City Univ.: $\int_1^{\sqrt{3}} \frac{1}{\sqrt{x^2+1}}dx$ [4] Daido Institute of Technology: $\int_0^{\frac{\pi}{2}} \frac{\sin ^ 3 x}{\sin x +\cos x}dx$ [5] Gunma Univ.: $\int_0^{\frac{3\pi}{4}} \{(1+x)\sin x+(1-x)\cos x\}dx$

2009 Today's Calculation Of Integral, 406

Find $ \lim_{n\to\infty} \int_0^{\frac{\pi}{2}} x|\cos (2n\plus{}1)x|\ dx$.

2007 Moldova National Olympiad, 12.8

Find all continuous functions $f\colon [0;1] \to R$ such that \[\int_{0}^{1}f(x)dx = 2\int_{0}^{1}(f(x^{4}))^{2}dx+\frac{2}{7}\]

2012 Hanoi Open Mathematics Competitions, 7

[b]Q7.[/b] Find all integers $n$ such that $60+2n-n^2$ is a perfect square.

2005 Putnam, B4

For positive integers $ m$ and $ n$, let $ f\left(m,n\right)$ denote the number of $ n$-tuples $ \left(x_1,x_2,\dots,x_n\right)$ of integers such that $ \left|x_1\right| \plus{} \left|x_2\right| \plus{} \cdots \plus{} \left|x_n\right|\le m$. Show that $ f\left(m,n\right) \equal{} f\left(n,m\right)$.

2011 Today's Calculation Of Integral, 764

Let $f(x)$ be a continuous function defined on $0\leq x\leq \pi$ and satisfies $f(0)=1$ and \[\left\{\int_0^{\pi} (\sin x+\cos x)f(x)dx\right\}^2=\pi \int_0^{\pi}\{f(x)\}^2dx.\] Evaluate $\int_0^{\pi} \{f(x)\}^3dx.$