This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1687

2005 Morocco TST, 3

Find all primes $p$ such that $p^2-p+1$ is a perfect cube.

2014 Miklós Schweitzer, 2

Let $ k\geq 1 $ and let $ I_{1},\dots, I_{k} $ be non-degenerate subintervals of the interval $ [0, 1] $. Prove that \[ \sum \frac{1}{\left | I_{i}\cup I_{j} \right |} \geq k^{2} \] where the summation is over all pairs $ (i, j) $ of indices such that $I_i\cap I_j\neq \emptyset$.

1983 Putnam, B5

Let $\lVert u\rVert$ denote the distance from the real number $u$ to the nearest integer. For positive integers $n$, let $$a_n=\frac1n\int^n_1\left\lVert\frac nx\right\rVert dx.$$Determine $\lim_{n\to\infty}a_n$.

2011 Today's Calculation Of Integral, 695

For a positive integer $n$, let \[S_n=\int_0^1 \frac{1-(-x)^n}{1+x}dx,\ \ T_n=\sum_{k=1}^n \frac{(-1)^{k-1}}{k(k+1)}\] Answer the following questions: (1) Show the following inequality. \[\left|S_n-\int_0^1 \frac{1}{1+x}dx\right|\leq \frac{1}{n+1}\] (2) Express $T_n-2S_n$ in terms of $n$. (3) Find the limit $\lim_{n\to\infty} T_n.$

2002 District Olympiad, 3

[b]a)[/b] Calculate $ \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , $ for all $ \alpha\in (0,1) . $ [b]b)[/b] Calculate $ \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx . $

2007 Today's Calculation Of Integral, 248

Evaluate $ \int_{\frac {\pi}{4}}^{\frac {3}{4}\pi } \cos \frac {1}{\sin \left(\frac {1}{\sin x}\right)}\cdot \cos \left(\frac {1}{\sin x}\right)\cdot \frac {\cos x}{\sin ^ 2 x\cdot \sin ^ 2 \left(\frac {1}{\sin x }\right)}\ dx$ Last Edited, Sorry kunny

2013 National Olympiad First Round, 14

Let $d(n)$ be the number of positive integers that divide the integer $n$. For all positive integral divisors $k$ of $64800$, what is the sum of numbers $d(k)$? $ \textbf{(A)}\ 1440 \qquad\textbf{(B)}\ 1650 \qquad\textbf{(C)}\ 1890 \qquad\textbf{(D)}\ 2010 \qquad\textbf{(E)}\ \text{None of above} $

2005 Today's Calculation Of Integral, 72

Let $f(x)$ be a continuous function satisfying $f(x)=1+k\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t)\sin (x-t)dt\ (k:constant\ number)$ Find the value of $k$ for which $\int_0^{\pi} f(x)dx$ is maximized.

2013 Waseda University Entrance Examination, 4

Given a solid $R$ contained in a semi cylinder with the hight $1$ which has a semicircle with radius $1$ as the base. The cross section at the hight $x\ (0\leq x\leq 1)$ is the form combined with two right-angled triangles as attached figure as below. Answer the following questions. (1) Find the cross-sectional area $S(x)$ at the hight $x$. (2) Find the volume of $R$. If necessary, when you integrate, set $x=\sin t.$

2010 Today's Calculation Of Integral, 660

Let $a,\ b$ be given positive constants. Evaluate \[\int_0^1 \frac{\ln\ (x+a)^{x+a}(x+b)^{x+b}}{(x+a)(x+b)}dx.\] Own

1997 Romania National Olympiad, 4

Suppose that $(f_n)_{n\in N}$ be the sequence from all functions $f_n:[0,1]\rightarrow \mathbb{R^+}$ s.t. $f_0$ be the continuous function and $\forall x\in [0,1] , \forall n\in \mathbb {N} , f_{n+1}(x)=\int_0^x \frac {1}{1+f_n (t)}dt$. Prove that for every $x\in [0,1]$ the sequence of $(f_n(x))_{n\in N}$ be the convergent sequence and calculate the limitation.

2013 Online Math Open Problems, 45

Let $N$ denote the number of ordered 2011-tuples of positive integers $(a_1,a_2,\ldots,a_{2011})$ with $1\le a_1,a_2,\ldots,a_{2011} \le 2011^2$ such that there exists a polynomial $f$ of degree $4019$ satisfying the following three properties: [list] [*] $f(n)$ is an integer for every integer $n$; [*] $2011^2 \mid f(i) - a_i$ for $i=1,2,\ldots,2011$; [*] $2011^2 \mid f(n+2011) - f(n)$ for every integer $n$. [/list] Find the remainder when $N$ is divided by $1000$. [i]Victor Wang[/i]

1961 AMC 12/AHSME, 4

Let the set consisting of the squares of the positive integers be called $u$; thus $u$ is the set $1, 4, 9, 16 . . .$. If a certain operation on one or more members of the set always yields a member of the set, we say that the set is closed under that operation. Then $u$ is closed under: ${{ \textbf{(A)}\ \text{Addition}\qquad\textbf{(B)}\ \text{Multiplication} \qquad\textbf{(C)}\ \text{Division} \qquad\textbf{(D)}\ \text{Extraction of a positive integral root} }\qquad\textbf{(E)} \text{None of these} } $

1990 AMC 12/AHSME, 7

A triangle with integral sides has perimeter $8$. The area of the triangle is $\textbf{(A) }2\sqrt{2}\qquad \textbf{(B) }\dfrac{16}{9}\sqrt{3}\qquad \textbf{(C) }2\sqrt{3}\qquad \textbf{(D) }4\qquad \textbf{(E) }4\sqrt{2}$

2010 Today's Calculation Of Integral, 543

Let $ y$ be the function of $ x$ satisfying the differential equation $ y'' \minus{} y \equal{} 2\sin x$. (1) Let $ y \equal{} e^xu \minus{} \sin x$, find the differential equation with which the function $ u$ with respect to $ x$ satisfies. (2) If $ y(0) \equal{} 3,\ y'(0) \equal{} 0$, then determine $ y$.

PEN H Problems, 8

Show that the equation \[x^{3}+y^{3}+z^{3}+t^{3}=1999\] has infinitely many integral solutions.

2015 Polish MO Finals, 2

Let $P$ be a polynomial with real coefficients. Prove that if for some integer $k$ $P(k)$ isn't integral, then there exist infinitely many integers $m$, for which $P(m)$ isn't integral.

2014 VTRMC, Problem 2

Evaluate $\int^2_0\frac{x(16-x^2)}{16-x^2+\sqrt{(4-x)(4+x)(12+x^2)}}dx$.

2009 ISI B.Stat Entrance Exam, 2

Let $f(x)$ be a continuous function, whose first and second derivatives are continuous on $[0,2\pi]$ and $f''(x) \geq 0$ for all $x$ in $[0,2\pi]$. Show that \[\int_{0}^{2\pi} f(x)\cos x dx \geq 0\]

2005 Today's Calculation Of Integral, 39

Find the minimum value of the following function $f(x) $ defined at $0<x<\frac{\pi}{2}$. \[f(x)=\int_0^x \frac{d\theta}{\cos \theta}+\int_x^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}\]

2010 Today's Calculation Of Integral, 542

Find continuous functions $ f(x),\ g(x)$ which takes positive value for any real number $ x$, satisfying $ g(x)\equal{}\int_0^x f(t)\ dt$ and $ \{f(x)\}^2\minus{}\{g(x)\}^2\equal{}1$.

1998 Putnam, 2

Let $s$ be any arc of the unit circle lying entirely in the first quadrant. Let $A$ be the area of the region lying below $s$ and above the $x$-axis and let $B$ be the area of the region lying to the right of the $y$-axis and to the left of $s$. Prove that $A+B$ depends only on the arc length, and not on the position, of $s$.

2005 Today's Calculation Of Integral, 87

Find the minimum value of $a\ (0<a<1)$ for which the following definite integral is minimized. \[ \int_0^{\pi} |\sin x-ax|\ dx \]

2012 Kyoto University Entry Examination, 1A

Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.

2014 PUMaC Team, 0

Your team receives up to $100$ points total for the team round. To play this minigame for up to $10$ bonus points, you must decide how to construct an optimal army with number of soldiers equal to the points you receive. Construct an army of $100$ soldiers with $5$ flanks; thus your army is the union of battalions $B_1$, $B_2$, $B_3$, $B_4$, and $B_5$. You choose the size of each battalion such that $|B_1|+|B_2|+|B_3|+|B_4|+|B_5|=100$. The size of each batallion must be integral and non-negative. Then, suppose you receive $n$ points for the Team Round. We will then "supply" your army as follows: if $n>B_1$, we fill in battalion $1$ so that it has $|B_1|$ soldiers; then repeat for the next battalion with $n-|B_1|$ soldiers. If at some point there are not enough soldiers to fill the battalion, the remainder will be put in that battalion and subsequent battalions will be empty. (Ex: suppose you tell us to form battalions of size $\{20,30,20,20,10\}$, and your team scores $73$ points. Then your battalions will actually be $\{20,30,20,3,0\}$.) Your team's army will then "fight" another's. The $B_i$ of both teams will be compared with the other $B_i$, and the winner of the overall war is the army who wins the majority of the battalion fights. The winner receives $1$ victory point, and in case of ties, both teams receive $\tfrac12$ victory points. Every team's army will fight everyone else's and the team war score will be the sum of the victory points won from wars. The teams with ranking $x$ where $7k\leq x\leq 7(k+1)$ will earn $10-k$ bonus points. For example: Team Princeton decides to allocate its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $20$, $20$, $20$, $20$, $20$. Team MIT allocates its army into battalions with size $|B_1|$, $|B_2|$, $|B_3|$, $|B_4|$, $|B_5|$ $=$ $10$, $10$, $10$, $10$, $60$. Now suppose Princeton scores $80$ points on the Team Round, and MIT scores $90$ points. Then after supplying, the armies will actually look like $\{20, 20, 20, 20, 0\}$ for Princeton and $\{10, 10, 10, 10, 50\}$ for MIT. Then note that in a war, Princeton beats MIT in the first four battalion battles while MIT only wins the last battalion battle; therefore Princeton wins the war, and Princeton would win $1$ victory point.