This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2009 All-Russian Olympiad, 6

Given a finite tree $ T$ and isomorphism $ f: T\rightarrow T$. Prove that either there exist a vertex $ a$ such that $ f(a)\equal{}a$ or there exist two neighbor vertices $ a$, $ b$ such that $ f(a)\equal{}b$, $ f(b)\equal{}a$.

1993 Vietnam National Olympiad, 3

Define the sequences $a_{0}, a_{1}, a_{2}, ...$ and $b_{0}, b_{1}, b_{2}, ...$ by $a_{0}= 2, b_{0}= 1, a_{n+1}= 2a_{n}b_{n}/(a_{n}+b_{n}), b_{n+1}= \sqrt{a_{n+1}b_{n}}$. Show that the two sequences converge to the same limit, and find the limit.

2012 IMO Shortlist, C4

Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules: [b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box. [b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box. Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.

1985 IMO Shortlist, 13

Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove: [i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls. [i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.

1986 IMO Shortlist, 12

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

2020 Saint Petersburg Mathematical Olympiad, 6.

The points $(1,1),(2,3),(4,5)$ and $(999,111)$ are marked in the coordinate system. We continue to mark points in the following way : [list] [*]If points $(a,b)$ are marked then $(b,a)$ and $(a-b,a+b)$ can be marked [*]If points $(a,b)$ and $(c,d)$ are marked then so can be $(ad+bc, 4ac-4bd)$. [/list] Can we, after some finite number of these steps, mark a point belonging to the line $y=2x$.

1989 IMO Shortlist, 19

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

1991 China Team Selection Test, 3

$5$ points are given in the plane, any three non-collinear and any four non-concyclic. If three points determine a circle that has one of the remaining points inside it and the other one outside it, then the circle is said to be [i]good[/i]. Let the number of good circles be $n$; find all possible values of $n$.

2011 AIME Problems, 11

Let $R$ be the set of all possible remainders when a number of the form $2^n$, $n$ a nonnegative integer, is divided by $1000$. Let $S$ be the sum of all elements in $R$. Find the remainder when $S$ is divided by $1000$.