This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2009 Unirea, 4

Evaluate the limit: \[ \lim_{n \to \infty}{n \cdot \sin{1} \cdot \sin{2} \cdot \dots \cdot \sin{n}}.\] Proposed to "Unirea" Intercounty contest, grade 11, Romania

2008 Vietnam National Olympiad, 4

Tags: limit , algebra
he sequence of real number $ (x_n)$ is defined by $ x_1 \equal{} 0,$ $ x_2 \equal{} 2$ and $ x_{n\plus{}2} \equal{} 2^{\minus{}x_n} \plus{} \frac{1}{2}$ $ \forall n \equal{} 1,2,3 \ldots$ Prove that the sequence has a limit as $ n$ approaches $ \plus{}\infty.$ Determine the limit.

2005 Romania National Olympiad, 3

Let $f:[0,\infty)\to(0,\infty)$ a continous function such that $\lim_{n\to\infty} \int^x_0 f(t)dt$ exists and it is finite. Prove that \[ \lim_{x\to\infty} \frac 1{\sqrt x} \int^x_0 \sqrt {f(t)} dt = 0. \] [i]Radu Miculescu[/i]

2011 Indonesia TST, 2

Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$

1982 Putnam, A6

Let $\sigma$ be a bijection on the positive integers. Let $x_1,x_2,x_3,\ldots$ be a sequence of real numbers with the following three properties: $(\text i)$ $|x_n|$ is a strictly decreasing function of $n$; $(\text{ii})$ $|\sigma(n)-n|\cdot|x_n|\to0$ as $n\to\infty$; $(\text{iii})$ $\lim_{n\to\infty}\sum_{k=1}^nx_k=1$. Prove or disprove that these conditions imply that $$\lim_{n\to\infty}\sum_{k=1}^nx_{\sigma(k)}=1.$$

Today's calculation of integrals, 880

For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows. (1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$. (2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$ (3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.

2010 IMC, 3

Define the sequence $x_1, x_2, ...$ inductively by $x_1 = \sqrt{5}$ and $x_{n+1} = x_n^2 - 2$ for each $n \geq 1$. Compute $\lim_{n \to \infty} \frac{x_1 \cdot x_2 \cdot x_3 \cdot ... \cdot x_n}{x_{n+1}}$.

2006 Switzerland Team Selection Test, 3

Find all the functions $f : \mathbb{R} \to \mathbb{R}$ satisfying for all $x,y \in \mathbb{R}$ $f(f(x)-y^2) = f(x)^2 - 2f(x)y^2 + f(f(y))$.

1999 VJIMC, Problem 1

Find the limit $$\lim_{n\to\infty}\left(\prod_{k=1}^n\frac k{k+n}\right)^{e^{\frac{1999}n}-1}.$$

2010 Contests, 1

suppose that polynomial $p(x)=x^{2010}\pm x^{2009}\pm...\pm x\pm 1$ does not have a real root. what is the maximum number of coefficients to be $-1$?(14 points)

1998 IMC, 3

Let $f(x)=2x(1-x), x\in\mathbb{R}$ and denote $f_n=f\circ f\circ ... \circ f$, $n$ times. (a) Find $\lim_{n\rightarrow\infty} \int^1_0 f_n(x)dx$. (b) Now compute $\int^1_0 f_n(x)dx$.

2005 Brazil Undergrad MO, 4

Let $a_{n+1} = a_n + \frac{1}{{a_n}^{2005}}$ and $a_1=1$. Show that $\sum^{\infty}_{n=1}{\frac{1}{n a_n}}$ converge.

2010 Today's Calculation Of Integral, 557

Find the folllowing limit. \[ \lim_{n\to\infty} \frac{(2n\plus{}1)\int_0^1 x^{n\minus{}1}\sin \left(\frac{\pi}{2}x\right)dx}{(n\plus{}1)^2\int_0^1 x^{n\minus{}1}\cos \left(\frac{\pi}{2}x\right)dx}\ \ (n\equal{}1,\ 2,\ \cdots).\]

2007 Harvard-MIT Mathematics Tournament, 9

Tags: limit , calculus , function
$g$ is a twice differentiable function over the positive reals such that \begin{align}g(x)+2x^3g^\prime(x)+x^4g^{\prime\prime}(x)&= 0 \qquad\text{ for all positive reals } x\\\lim_{x\to\infty}xg(x)&=1\end{align} Find the real number $\alpha>1$ such that $g(\alpha)=1/2$.

2011 Today's Calculation Of Integral, 727

For positive constant $a$, let $C: y=\frac{a}{2}(e^{\frac{x}{a}}+e^{-\frac{x}{a}})$. Denote by $l(t)$ the length of the part $a\leq y\leq t$ for $C$ and denote by $S(t)$ the area of the part bounded by the line $y=t\ (a<t)$ and $C$. Find $\lim_{t\to\infty} \frac{S(t)}{l(t)\ln t}.$

2012 Iran Team Selection Test, 3

The pentagon $ABCDE$ is inscirbed in a circle $w$. Suppose that $w_a,w_b,w_c,w_d,w_e$ are reflections of $w$ with respect to sides $AB,BC,CD,DE,EA$ respectively. Let $A'$ be the second intersection point of $w_a,w_e$ and define $B',C',D',E'$ similarly. Prove that \[2\le \frac{S_{A'B'C'D'E'}}{S_{ABCDE}}\le 3,\] where $S_X$ denotes the surface of figure $X$. [i]Proposed by Morteza Saghafian, Ali khezeli[/i]

2011 VJIMC, Problem 2

Tags: sequence , limit
Let $(a_n)^\infty_{n=1}$ be an unbounded and strictly increasing sequence of positive reals such that the arithmetic mean of any four consecutive terms $a_n,a_{n+1},a_{n+2},a_{n+3}$ belongs to the same sequence. Prove that the sequence $\frac{a_{n+1}}{a_n}$ converges and find all possible values of its limit.

2014 Paenza, 1

Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers which satisfies the following relation: \[a_{n+1}=10^n a_n^2\] (a) Prove that if $a_1$ is small enough, then $\displaystyle\lim_{n\to\infty} a_n =0$. (b) Find all possible values of $a_1\in \mathbb{R}$, $a_1\geq 0$, such that $\displaystyle\lim_{n\to\infty} a_n =0$.

1976 Bulgaria National Olympiad, Problem 6

It is given a plane with a coordinate system with a beginning at the point $O$. $A(n)$, when $n$ is a natural number is a count of the points with whole coordinates which distances to $O$ are less than or equal to $n$. (a) Find $$\ell=\lim_{n\to\infty}\frac{A(n)}{n^2}.$$ (b) For which $\beta$ $(1<\beta<2)$ does the following limit exist? $$\lim_{n\to\infty}\frac{A(n)-\pi n^2}{n^\beta}$$

1989 Spain Mathematical Olympiad, 3

Prove $ \frac{1}{10\sqrt2}<\frac{1}{2}\frac{3}{4}\frac{5}{6}...\frac{99}{100}<\frac{1}{10} $

2013 Romania Team Selection Test, 1

Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.

2004 Pre-Preparation Course Examination, 2

Let $ H(n)$ be the number of simply connected subsets with $ n$ hexagons in an infinite hexagonal network. Also let $ P(n)$ be the number of paths starting from a fixed vertex (that do not connect itself) with lentgh $ n$ in this hexagonal network. a) Prove that the limits \[ \alpha: \equal{}\lim_{n\rightarrow\infty}H(n)^{\frac1n}, \beta: \equal{}\lim_{n\rightarrow\infty}P(n)^{\frac1n}\]exist. b) Prove the following inequalities: $ \sqrt2\leq\beta\leq2$ $ \alpha\leq 12.5$ $ \alpha\geq3.5$ $ \alpha\leq\beta^4$

2001 Czech-Polish-Slovak Match, 5

Tags: limit , function , algebra
Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy \[f(x^2 + y) + f(f(x) - y) = 2f(f(x)) + 2y^2\quad\text{ for all }x, y \in \mathbb{R}.\]

2007 Today's Calculation Of Integral, 180

Let $a_{n}$ be the area surrounded by the curves $y=e^{-x}$ and the part of $y=e^{-x}|\cos x|,\ (n-1)\pi \leq x\leq n\pi \ (n=1,\ 2,\ 3,\ \cdots).$ Evaluate $\lim_{n\to\infty}(a_{1}+a_{2}+\cdots+a_{n}).$

2005 Iran MO (3rd Round), 2

Tags: limit , algebra
Suppose $\{x_n\}$ is a decreasing sequence that $\displaystyle\lim_{n \rightarrow\infty}x_n=0$. Prove that $\sum(-1)^nx_n$ is convergent