This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

Today's calculation of integrals, 896

Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$

2009 Brazil National Olympiad, 3

Let $ n > 3$ be a fixed integer and $ x_1,x_2,\ldots, x_n$ be positive real numbers. Find, in terms of $ n$, all possible real values of \[ {x_1\over x_n\plus{}x_1\plus{}x_2} \plus{} {x_2\over x_1\plus{}x_2\plus{}x_3} \plus{} {x_3\over x_2\plus{}x_3\plus{}x_4} \plus{} \cdots \plus{} {x_{n\minus{}1}\over x_{n\minus{}2}\plus{}x_{n\minus{}1}\plus{}x_n} \plus{} {x_n\over x_{n\minus{}1}\plus{}x_n\plus{}x_1}\]

2004 Vietnam National Olympiad, 2

Let $x$, $y$, $z$ be positive reals satisfying $\left(x+y+z\right)^{3}=32xyz$ Find the minimum and the maximum of $P=\frac{x^{4}+y^{4}+z^{4}}{\left(x+y+z\right)^{4}}$

2019 Jozsef Wildt International Math Competition, W. 57

Let be $x_1=\frac{1}{\sqrt[n+1]{n!}}$ and $x_2=\frac{1}{\sqrt[n+1]{(n-1)!}}$ for all $n\in \mathbb{N}^*$ and $f:\left(\left .\frac{1}{\sqrt[n+1]{(n+1)!}},1\right.\right] \to \mathbb{R}$ where $$f(x)=\frac{n+1}{x\ln (n+1)!+(n+1)\ln \left(x^x\right)}$$Prove that the sequence $(a_n)_{n\geq1}$ when $a_n=\int \limits_{x_1}^{x_2}f(x)dx$ is convergent and compute $$\lim \limits_{n \to \infty}a_n$$

2010 IberoAmerican Olympiad For University Students, 2

Calculate the sum of the series $\sum_{-\infty}^{\infty}\frac{\sin^33^k}{3^k}$.

Today's calculation of integrals, 871

Define sequences $\{a_n\},\ \{b_n\}$ by \[a_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}d\theta,\ b_n=\int_{-\frac {\pi}6}^{\frac{\pi}6} e^{n\sin \theta}\cos \theta d\theta\ (n=1,\ 2,\ 3,\ \cdots).\] (1) Find $b_n$. (2) Prove that for each $n$, $b_n\leq a_n\leq \frac 2{\sqrt{3}}b_n.$ (3) Find $\lim_{n\to\infty} \frac 1{n}\ln (na_n).$

1984 Putnam, A3

Let $n$ be a positive integer. Let $a,b,x$ be real numbers, with $a \neq b$ and let $M_n$ denote the $2n x 2n $ matrix whose $(i,j)$ entry $m_{ij}$ is given by $m_{ij}=x$ if $i=j$, $m_{ij}=a$ if $i \not= j$ and $i+j$ is even, $m_{ij}=b$ if $i \not= j$ and $i+j$ is odd. For example $ M_2=\begin{vmatrix}x& b& a & b\\ b& x & b &a\\ a & b& x & b\\ b & a & b & x \end{vmatrix}$. Express $\lim_{x\to\ 0} \frac{ det M_n}{ (x-a)^{(2n-2)} }$ as a polynomial in $a,b $ and $n$ . P.S. How write in latex $m_{ij}=...$ with symbol for the system (because is multiform function?)

2013 India IMO Training Camp, 1

Find all functions $f$ from the set of real numbers to itself satisfying \[ f(x(1+y)) = f(x)(1 + f(y)) \] for all real numbers $x, y$.

1973 Miklós Schweitzer, 5

Verify that for every $ x > 0$, \[ \frac{\Gamma'(x\plus{}1)}{\Gamma (x\plus{}1)} > \log x.\] [i]P. Medgyessy[/i]

1987 Spain Mathematical Olympiad, 6

For all natural numbers $n$, consider the polynomial $P_n(x) = x^{n+2}-2x+1$. (a) Show that the equation $P_n(x)=0$ has exactly one root $c_n$ in the open interval $(0,1)$. (b) Find $lim_{n \to \infty}c_n$.

2010 Today's Calculation Of Integral, 549

Let $ f(x)$ be a function defined on $ [0,\ 1]$. For $ n=1,\ 2,\ 3,\ \cdots$, a polynomial $ P_n(x)$ is defined by $ P_n(x)=\sum_{k=0}^n {}_nC{}_k f\left(\frac{k}{n}\right)x^k(1-x)^{n-k}$. Prove that $ \lim_{n\to\infty} \int_0^1 P_n(x)dx=\int_0^1 f(x)dx$.

2013 Stanford Mathematics Tournament, 10

Evaluate $\lim_{n\to\infty}\left[\left(\prod_{k=1}^{n}\frac{2k}{2k-1}\right)\int_{-1}^{\infty}\frac{(\cos x)^{2n}}{2^x} \, dx\right]$.

2006 China Team Selection Test, 1

Two positive valued sequences $\{ a_{n}\}$ and $\{ b_{n}\}$ satisfy: (a): $a_{0}=1 \geq a_{1}$, $a_{n}(b_{n+1}+b_{n-1})=a_{n-1}b_{n-1}+a_{n+1}b_{n+1}$, $n \geq 1$. (b): $\sum_{i=1}^{n}b_{i}\leq n^{\frac{3}{2}}$, $n \geq 1$. Find the general term of $\{ a_{n}\}$.

1996 IMC, 11

i) Prove that $$ \lim_{x\to \infty}\,\sum_{n=1}^{\infty} \frac{nx}{(n^{2}+x)^{2}}=\frac{1}{2}$$. ii) Prove that there is a positive constant $c$ such that for every $x\in [1,\infty)$ we have $$\left|\sum_{n=1}^{\infty} \frac{nx}{(n^{2}+x)^{2}}-\frac{1}{2} \right| \leq \frac{c}{x}$$

2020 LIMIT Category 2, 14

Tags: number theory , limit , sum
Let $f: N \to N$ satisfy $n=\sum_{d|n} f(d), \forall n \in N$. Then sum of all possible values of $f(100)$ is?

2011 Putnam, A3

Find a real number $c$ and a positive number $L$ for which \[\lim_{r\to\infty}\frac{r^c\int_0^{\pi/2}x^r\sin x\,dx}{\int_0^{\pi/2}x^r\cos x\,dx}=L.\]

2012 Today's Calculation Of Integral, 846

For $a>0$, let $f(a)=\lim_{t\rightarrow +0} \int_{t}^{1} |ax+x\ln x|\ dx.$ Let $a$ vary in the range $0 <a< +\infty$, find the minimum value of $f(a)$.

2011 Uzbekistan National Olympiad, 2

Prove that $ \forall n\in\mathbb{N}$,$ \exists a,b,c\in$$\bigcup_{k\in\mathbb{N}}(k^{2},k^{2}+k+3\sqrt 3) $ such that $n=\frac{ab}{c}$.

2004 Czech-Polish-Slovak Match, 2

Show that for each natural number $k$ there exist only finitely many triples $(p, q, r)$ of distinct primes for which $p$ divides $qr-k$, $q$ divides $pr-k$, and $r$ divides $pq - k$.

2007 Princeton University Math Competition, 7

Given two sequences $x_n$ and $y_n$ defined by $x_0 = y_0 = 7$, \[x_n = 4x_{n-1}+3y_{n-1}, \text{ and}\]\[y_n = 3y_{n-1}+2x_{n-1},\] find $\lim_{n \to \infty} \frac{x_n}{y_n}$.

2019 Jozsef Wildt International Math Competition, W. 8

Let $(a_n)_{n\geq 1}$ be a positive real sequence given by $a_n=\sum \limits_{k=1}^n \frac{1}{k}$. Compute $$\lim \limits_{n \to \infty}e^{-2a_n} \sum \limits_{k=1}^n \left \lfloor \left(\sqrt[2k]{k!}+\sqrt[2(k+1)]{(k+1)!}\right)^2 \right \rfloor$$where we denote by $\lfloor x\rfloor$ the integer part of $x$.

2000 IMC, 6

Let $f: \mathbb{R}\rightarrow ]0,+\infty[$ be an increasing differentiable function with $\lim_{x\rightarrow+\infty}f(x)=+\infty$ and $f'$ is bounded, and let $F(x)=\int^x_0 f(t) dt$. Define the sequence $(a_n)$ recursively by $a_0=1,a_{n+1}=a_n+\frac1{f(a_n)}$ Define the sequence $(b_n)$ by $b_n=F^{-1}(n)$. Prove that $\lim_{x\rightarrow+\infty}(a_n-b_n)=0$.

2006 Petru Moroșan-Trident, 1

What relationship should be between the positive real numbers $ a $ and $ b $ such that the sequence $ \left(\left( a\sqrt[n]{n} +b \right)^{\frac{n}{\ln n}}\right)_{n\ge 1} $ has a nonzero and finite limit? For such $ a,b, $ calculate the limit of this sequence. [i]Ion Cucurezeanu[/i]

2020 LIMIT Category 1, 16

A box contains $28$ red balls, $20$ green balls, $19$ yellow balls, $13$ blue balls, $11$ white balls and $9$ black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that atleast $15$ balls of a single colour will be drawn?

2013 Baltic Way, 20

Find all polynomials $f$ with non-negative integer coefficients such that for all primes $p$ and positive integers $n$ there exist a prime $q$ and a positive integer $m$ such that $f(p^n)=q^m$.