This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2004 Unirea, 3

[b]a)[/b] Prove that for any natural numbers $ n, $ the inequality $$ e^{2-1/n} >\prod_{k=1}^n (1+1/k^2) $$ holds. [b]b)[/b] Prove that the sequence $ \left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined by the recursive relation $ a_{n+1}=\frac{2}{n^2}\sum_{k=1}^n ka_k $ is nondecreasing. Is it convergent?

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

2020 LIMIT Category 1, 8

Find the greatest integer which doesn't exceed $\frac{3^{100}+2^{100}}{3^{96}+2^{96}}$ (A)$81$ (B)$80$ (C)$79$ (D)$82$

1973 Poland - Second Round, 3

Tags: limit , algebra , calculus
Let $ f:\mathbb{R} \to \mathbb{R} $ be an increasing function satisfying the following conditions: 1. $ f(x+1) = f(x) + 1 $ for each $ x \in \mathbb{R} $, 2. there exists an integer p such that $ f(f(f(O))) = p $. Prove that for every real number $ x $ $$ \lim_{n\to \infty} \frac{x_n}{n} = \frac{p}{3}.$$ where $ x_1 = x $ and $ x_n =f(x_{n-1}) $ for $ n = 2, 3, \ldots $.

2008 AIME Problems, 12

On a long straight stretch of one-way single-lane highway, cars all travel at the same speed and all obey the safety rule: the distance from the back of the car ahead to the front of the car behind is exactly one car length for each 15 kilometers per hour of speed or fraction thereof (Thus the front of a car traveling 52 kilometers per hour will be four car lengths behind the back of the car in front of it.) A photoelectric eye by the side of the road counts the number of cars that pass in one hour. Assuming that each car is 4 meters long and that the cars can travel at any speed, let $ M$ be the maximum whole number of cars that can pass the photoelectric eye in one hour. Find the quotient when $ M$ is divided by 10.

2004 Unirea, 4

Let be the sequence $ \left( I_n \right)_{n\ge 1} $ defined as $ I_n=\int_0^{\pi } \frac{dx}{x+\sin^n x +\cos^n x} . $ [b]a)[/b] Study the monotony of $ \left( I_n \right)_{n\ge 1} . $ [b]b)[/b] Calculate the limit of $ \left( I_n \right)_{n\ge 1} . $

2009 Today's Calculation Of Integral, 489

Find the following limit. $ \lim_{n\to\infty} \int_{\minus{}1}^1 |x|\left(1\plus{}x\plus{}\frac{x^2}{2}\plus{}\frac{x^3}{3}\plus{}\cdots \plus{}\frac{x^{2n}}{2n}\right)\ dx$.

2020 LIMIT Category 1, 20

How many integers $n$, satisfy $|n|<2020$ and the equation $11^3|n^3+3n^2-107n+1$ (A)$0$ (B)$101$ (C)$367$ (D)$368$

2009 Today's Calculation Of Integral, 451

Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \ln \left(1\plus{}\frac{k^a}{n^{a\plus{}1}}\right).$

2020 LIMIT Category 2, 4

Define the sequence $\{a_n\}_{n\geq 1}$ as $a_n=n-1$, $n\leq 2$ and $a_n=$ remainder left by $a_{n-1}+a_{n-2}$ when divided by $3$ $\forall n\geq 2$. Then $\sum_{i=2018}^{2025}a_i=$? (A)$6$ (B)$7$ (C)$8$ (D)$9$

2007 Princeton University Math Competition, 4

Tags: limit
Let $a_{n+1} = \frac{4}{7}a_n + \frac{3}{7}a_{n-1}$ and $a_0 = 1$, $a_1 = 2$. Find $\lim_{n \to \infty} a_n$.

2000 District Olympiad (Hunedoara), 4

Let $ f:[0,1]\longrightarrow\mathbb{R}_+^* $ be a Riemann-integrable function. Calculate $ \lim_{n\to\infty}\left(-n+\sum_{i=1}^ne^{\frac{1}{n}\cdot f\left(\frac{i}{n}\right)}\right) . $

2007 IMC, 3

Tags: limit , function
Let $ C$ be a nonempty closed bounded subset of the real line and $ f: C\to C$ be a nondecreasing continuous function. Show that there exists a point $ p\in C$ such that $ f(p) \equal{} p$. (A set is closed if its complement is a union of open intervals. A function $ g$ is nondecreasing if $ g(x)\le g(y)$ for all $ x\le y$.)

1997 VJIMC, Problem 4-M

Prove that $$\sum_{n=1}^\infty\frac{n^2}{(7n)!}=\frac1{7^3}\sum_{k=1}^2\sum_{j=0}^6e^{\cos(2\pi j/7)}\cdot\cos\left(\frac{2k\pi j}7+\sin\frac{2\pi j}7\right).$$

2005 ISI B.Stat Entrance Exam, 6

Let $f$ be a function defined on $(0, \infty )$ as follows: \[f(x)=x+\frac1x\] Let $h$ be a function defined for all $x \in (0,1)$ as \[h(x)=\frac{x^4}{(1-x)^6}\] Suppose that $g(x)=f(h(x))$ for all $x \in (0,1)$. (a) Show that $h$ is a strictly increasing function. (b) Show that there exists a real number $x_0 \in (0,1)$ such that $g$ is strictly decreasing in the interval $(0,x_0]$ and strictly increasing in the interval $[x_0,1)$.

2019 Jozsef Wildt International Math Competition, W. 37

Tags: product , limit
For real $a > 1$ find$$\lim \limits_{n \to \infty}\sqrt[n]{\prod \limits_{k=2}^n \left(a-a^{\frac{1}{k}}\right)}$$

Today's calculation of integrals, 764

Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$

2020 Brazil Undergrad MO, Problem 1

Tags: calculus , limit , geometry
Let $R > 0$, be an integer, and let $n(R)$ be the number um triples $(x, y, z) \in \mathbb{Z}^3$ such that $2x^2+3y^2+5z^2 = R$. What is the value of $\lim_{ R \to \infty}\frac{n(1) + n(2) + \cdots + n(R)}{R^{3/2}}$?

1984 Vietnam National Olympiad, 2

The sequence $(u_n)$ is defined by $u_1 = 1, u_2 = 2$ and $u_{n+1} = 3u_n - u_{n-1}$ for $n \ge 2$. Set $v_n =\sum_{k=1}^n \text{arccot }u_k$. Compute $\lim_{n\to\infty} v_n$.

1967 AMC 12/AHSME, 23

Tags: logarithm , limit
If $x$ is real and positive and grows beyond all bounds, then $\log_3{(6x-5)}-\log_3{(2x+1)}$ approaches: $\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ \text{no finite number}$

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2006 Romania National Olympiad, 2

Prove that \[ \lim_{n \to \infty} n \left( \frac{\pi}{4} - n \int_0^1 \frac{x^n}{1+x^{2n}} \, dx \right) = \int_0^1 f(x) \, dx , \] where $f(x) = \frac{\arctan x}{x}$ if $x \in \left( 0,1 \right]$ and $f(0)=1$. [i]Dorin Andrica, Mihai Piticari[/i]

2013 Today's Calculation Of Integral, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

Today's calculation of integrals, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]