This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2002 Moldova National Olympiad, 1

Tags: limit
The sequence $ (a_n)$ is defined by $ a_1\in (0,1)$ and $ a_{n\plus{}1}\equal{}a_n(1\minus{}a_n)$ for $ n\ge 1$. Prove that $ \lim_{n\rightarrow \infty} na_n\equal{}1$

2020 LIMIT Category 1, 6

Tags: counting , limit
What is the number of $4$ digit natural numbers such that the sum of digits is even? (A)$4999$ (B)$5000$ (C)$5050$ (D)$4500$

2005 Today's Calculation Of Integral, 55

Evaluate \[\lim_{n\to\infty} n\int_0^1 (1+x)^{-n-1}e^{x^2}\ dx\ \ ( n=1,2,\cdots)\]

1989 APMO, 5

Determine all functions $f$ from the reals to the reals for which (1) $f(x)$ is strictly increasing and (2) $f(x) + g(x) = 2x$ for all real $x$, where $g(x)$ is the composition inverse function to $f(x)$. (Note: $f$ and $g$ are said to be composition inverses if $f(g(x)) = x$ and $g(f(x)) = x$ for all real $x$.)

1958 November Putnam, B1

Given $$b_n = \sum_{k=0}^{n} \binom{n}{k}^{-1}, \;\; n\geq 1,$$ prove that $$b_n = \frac{n+1}{2n} b_{n-1} +1, \;\; n \geq 2.$$ Hence, as a corollary, show $$ \lim_{n \to \infty} b_n =2.$$

2009 Harvard-MIT Mathematics Tournament, 5

Compute \[\lim_{h\to 0}\dfrac{\sin(\frac{\pi}{3}+4h)-4\sin(\frac{\pi}{3}+3h)+6\sin(\frac{\pi}{3}+2h)-4\sin(\frac{\pi}{3}+h)+\sin(\frac{\pi}{3})}{h^4}.\]

1982 IMO Longlists, 53

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2020 Jozsef Wildt International Math Competition, W2

Let $\left(a_n\right)_{n\geq1}$ be a sequence of nonnegative real numbers which converges to $a \in \mathbb{R}$. [list=1] [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+a_nx^n \right)^ndx}$$ [*]Calculate$$\lim \limits_{n\to \infty}\sqrt[n]{\int \limits_0^1 \left(1+\frac{a_1x+a_3x^3+\cdots+a_{2n-1}x^{2n-1}}{n} \right)^ndx}$$ [/list]

2014 Contests, 4

Let $a>1$ be a positive integer and $f\in \mathbb{Z}[x]$ with positive leading coefficient. Let $S$ be the set of integers $n$ such that \[n \mid a^{f(n)}-1.\] Prove that $S$ has density $0$; that is, prove that $\lim_{n\rightarrow \infty} \frac{|S\cap \{1,...,n\}|}{n}=0$.

2006 Moldova MO 11-12, 1

Let $n\in\mathbb{N}^*$. Prove that \[ \lim_{x\to 0}\frac{ \displaystyle (1+x^2)^{n+1}-\prod_{k=1}^n\cos kx}{ \displaystyle x\sum_{k=1}^n\sin kx}=\frac{2n^2+n+12}{6n}. \]

2007 Iran MO (3rd Round), 4

a) Let $ n_{1},n_{2},\dots$ be a sequence of natural number such that $ n_{i}\geq2$ and $ \epsilon_{1},\epsilon_{2},\dots$ be a sequence such that $ \epsilon_{i}\in\{1,2\}$. Prove that the sequence: \[ \sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots\plus{}\sqrt[n_{k}]{\epsilon_{k}}}}\]is convergent and its limit is in $ (1,2]$. Define $ \sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots}}$ to be this limit. b) Prove that for each $ x\in(1,2]$ there exist sequences $ n_{1},n_{2},\dots\in\mathbb N$ and $ n_{i}\geq2$ and $ \epsilon_{1},\epsilon_{2},\dots$, such that $ n_{i}\geq2$ and $ \epsilon_{i}\in\{1,2\}$, and $ x\equal{}\sqrt[n_{1}]{\epsilon_{1}\plus{}\sqrt[n_{2}]{\epsilon_{2}\plus{}\dots}}$

2009 Today's Calculation Of Integral, 406

Find $ \lim_{n\to\infty} \int_0^{\frac{\pi}{2}} x|\cos (2n\plus{}1)x|\ dx$.

1993 IMO Shortlist, 1

Define a sequence $\langle f(n)\rangle^{\infty}_{n=1}$ of positive integers by $f(1) = 1$ and \[f(n) = \begin{cases} f(n-1) - n & \text{ if } f(n-1) > n;\\ f(n-1) + n & \text{ if } f(n-1) \leq n, \end{cases}\] for $n \geq 2.$ Let $S = \{n \in \mathbb{N} \;\mid\; f(n) = 1993\}.$ [b](i)[/b] Prove that $S$ is an infinite set. [b](ii)[/b] Find the least positive integer in $S.$ [b](iii)[/b] If all the elements of $S$ are written in ascending order as \[ n_1 < n_2 < n_3 < \ldots , \] show that \[ \lim_{i\rightarrow\infty} \frac{n_{i+1}}{n_i} = 3. \]

2000 Harvard-MIT Mathematics Tournament, 18

What is the value of $ \sum_{n=1}^\infty (\tan^{-1}\sqrt{n}-\tan^{-1}\sqrt{n+1})$?

1997 AIME Problems, 12

The function $f$ defined by $\displaystyle f(x)= \frac{ax+b}{cx+d}$. where $a,b,c$ and $d$ are nonzero real numbers, has the properties $f(19)=19, f(97)=97$ and $f(f(x))=x$ for all values except $\displaystyle \frac{-d}{c}$. Find the unique number that is not in the range of $f$.

1956 Putnam, A1

Evaluate $$ \lim_{x\to \infty} \left( \frac{a^x -1}{x(a-1)} \right)^{1\slash x},$$ where $a>0$ and $a\ne 1.$

2007 China Team Selection Test, 3

Prove that for any positive integer $ n$, there exists only $ n$ degree polynomial $ f(x),$ satisfying $ f(0) \equal{} 1$ and $ (x \plus{} 1)[f(x)]^2 \minus{} 1$ is an odd function.

2009 Today's Calculation Of Integral, 459

Find $ \lim_{x\to\infty} \int_{e^{\minus{}x}}^1 \left(\ln \frac{1}{t}\right)^ n\ dt\ (x\geq 0,\ n\equal{}1,\ 2,\ \cdots)$.

2015 Miklos Schweitzer, 4

Let $a_n$ be a series of positive integers with $a_1=1$ and for any arbitrary prime number $p$, the set $\{a_1,a_2,\cdots,a_p\}$ is a complete remainder system modulo $p$. Prove that $\lim_{n\rightarrow \infty} \cfrac{a_n}{n}=1$.

2017 Mathematical Talent Reward Programme, MCQ: P 10

Let $f:\mathbb{R}\to \mathbb{R}$ be a differentiable function such that $\lim \limits_{x\to \infty}f'(x)=1$, then [list=1] [*] $f$ is increasing [*] $f$ is unbounded [*] $f'$ is bounded [*] All of these [/list]

2002 Putnam, 1

Let $k$ be a fixed positive integer. The $n$th derivative of $\tfrac{1}{x^k-1}$ has the form $\tfrac{P_n(x)}{(x^k-1)^{n+1}}$, where $P_n(x)$ is a polynomial. Find $P_n(1)$.

1999 Putnam, 4

Let $f$ be a real function with a continuous third derivative such that $f(x)$, $f^\prime(x)$, $f^{\prime\prime}(x)$, $f^{\prime\prime\prime}(x)$ are positive for all $x$. Suppose that $f^{\prime\prime\prime}(x)\leq f(x)$ for all $x$. Show that $f^\prime(x)<2f(x)$ for all $x$.

2009 Vietnam National Olympiad, 2

Tags: algebra , limit
The sequence $ \{x_n\}$ is defined by \[ \left\{ \begin{array}{l}x_1 \equal{} \frac{1}{2} \\x_n \equal{} \frac{{\sqrt {x_{n \minus{} 1} ^2 \plus{} 4x_{n \minus{} 1} } \plus{} x_{n \minus{} 1} }}{2} \\\end{array} \right.\] Prove that the sequence $ \{y_n\}$, where $ y_n\equal{}\sum_{i\equal{}1}^{n}\frac{1}{{{x}_{i}}^{2}}$, has a finite limit and find that limit.

2003 IMC, 6

Let $(a_{n})$ be the sequence defined by $a_{0}=1,a_{n+1}=\sum_{k=0}^{n}\dfrac{a_k}{n-k+2}$. Find the limit \[\lim_{n \rightarrow \infty} \sum_{k=0}^{n}\dfrac{a_{k}}{2^{k}},\] if it exists.

2004 Nicolae Coculescu, 4

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a continuous function having a primitive $ F $ having the property that $ f-F $ is positive globally. Calculate $ \lim_{x\to\infty } f(x) . $ [i]Florian Dumitrel[/i]