Found problems: 837
2010 Today's Calculation Of Integral, 657
A sequence $a_n$ is defined by $\int_{a_n}^{a_{n+1}} (1+|\sin x|)dx=(n+1)^2\ (n=1,\ 2,\ \cdots),\ a_1=0$.
Find $\lim_{n\to\infty} \frac{a_n}{n^3}$.
2008 Teodor Topan, 3
Consider the sequence $ a_n\equal{}\sqrt[3]{n^3\plus{}3n^2\plus{}2n\plus{}1}\plus{}a\sqrt[5]{n^5\plus{}5n^4\plus{}1}\plus{}\frac{ln(e^{n^2}\plus{}n\plus{}2)}{n\plus{}2}\plus{}b$. Find $ a,b \in \mathbb{R}$ such that $ \displaystyle\lim_{n\to\infty}a_n\equal{}5$.
1998 IberoAmerican Olympiad For University Students, 6
Take the following differential equation:
\[3(3+x^2)\frac{dx}{dt}=2(1+x^2)^2e^{-t^2}\]
If $x(0)\leq 1$, prove that there exists $M>0$ such that $|x(t)|<M$ for all $t\geq 0$.
2007 Today's Calculation Of Integral, 201
Evaluate the following definite integral.
\[\int_{-1}^{1}\frac{e^{2x}+1-(x+1)(e^{x}+e^{-x})}{x(e^{x}-1)}dx\]
2007 Today's Calculation Of Integral, 193
For $a>0$, let $l$ be the line created by rotating the tangent line to parabola $y=x^{2}$, which is tangent at point $A(a,a^{2})$, around $A$ by $-\frac{\pi}{6}$.
Let $B$ be the other intersection of $l$ and $y=x^{2}$. Also, let $C$ be $(a,0)$ and let $O$ be the origin.
(1) Find the equation of $l$.
(2) Let $S(a)$ be the area of the region bounded by $OC$, $CA$ and $y=x^{2}$. Let $T(a)$ be the area of the region bounded by $AB$ and $y=x^{2}$. Find $\lim_{a \to \infty}\frac{T(a)}{S(a)}$.
1985 IMO Longlists, 17
Set
\[A_n=\sum_{k=1}^n \frac{k^6}{2^k}.\]
Find $\lim_{n\to\infty} A_n.$
1988 Greece National Olympiad, 4
Let $a_1=5$ and $a_{n+1}= a^2_{n}-2$ for any $n=1,2,...$.
a) Find $\lim_{n \rightarrow \infty}\frac{a_{n+1}}{a_1a_2 ...a_{n}}$
b) Find $\lim_{\nu \rightarrow \infty}\left(\frac{1}{a_1}+\frac{1}{a_1a_2}+...+\frac{1}{a_1a_2 ...a_{\nu}}\right)$
1983 Iran MO (2nd round), 5
Find the value of $S_n= \arctan \frac 12 + \arctan \frac 18+ \arctan \frac {1}{18} + \cdots + \arctan \frac {1}{2n^2}.$ Also find $\lim_{n \to \infty} S_n.$
1983 Putnam, B5
Let $\lVert u\rVert$ denote the distance from the real number $u$ to the nearest integer. For positive integers $n$, let
$$a_n=\frac1n\int^n_1\left\lVert\frac nx\right\rVert dx.$$Determine $\lim_{n\to\infty}a_n$.
2005 Croatia National Olympiad, 2
Let $P(x)$ be a monic polynomial of degree $n$ with nonnegative coefficients and the free term equal to $1$. Prove that if all the roots of $P(x)$ are real, then $P(x) \geq (x+1)^{n}$ holds for every $x \geq 0$.
2011 Today's Calculation Of Integral, 695
For a positive integer $n$, let
\[S_n=\int_0^1 \frac{1-(-x)^n}{1+x}dx,\ \ T_n=\sum_{k=1}^n \frac{(-1)^{k-1}}{k(k+1)}\]
Answer the following questions:
(1) Show the following inequality.
\[\left|S_n-\int_0^1 \frac{1}{1+x}dx\right|\leq \frac{1}{n+1}\]
(2) Express $T_n-2S_n$ in terms of $n$.
(3) Find the limit $\lim_{n\to\infty} T_n.$
2006 China Team Selection Test, 1
Two positive valued sequences $\{ a_{n}\}$ and $\{ b_{n}\}$ satisfy:
(a): $a_{0}=1 \geq a_{1}$, $a_{n}(b_{n+1}+b_{n-1})=a_{n-1}b_{n-1}+a_{n+1}b_{n+1}$, $n \geq 1$.
(b): $\sum_{i=1}^{n}b_{i}\leq n^{\frac{3}{2}}$, $n \geq 1$.
Find the general term of $\{ a_{n}\}$.
2006 Moldova MO 11-12, 2
Function $f: [a,b]\to\mathbb{R}$, $0<a<b$ is continuous on $[a,b]$ and differentiable on $(a,b)$. Prove that there exists $c\in(a,b)$ such that \[ f'(c)=\frac1{a-c}+\frac1{b-c}+\frac1{a+b}. \]
2001 Romania National Olympiad, 4
The continuous function $f:[0,1]\rightarrow\mathbb{R}$ has the property:
\[\lim_{x\rightarrow\infty}\ n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)=0 \]
for every $x\in [0,1)$.
Show that:
a) For every $\epsilon >0$ and $\lambda\in (0,1)$, we have:
\[ \sup\ \{x\in[0,\lambda )\mid |f(x)-f(0)|\le \epsilon x \}=\lambda \]
b) $f$ is a constant function.
2005 IberoAmerican Olympiad For University Students, 5
Arnaldo and Bernaldo play a game where they alternate saying natural numbers, and the winner is the one who says $0$. In each turn except the first the possible moves are determined from the previous number $n$ in the following way: write
\[n =\sum_{m\in O_n}2^m;\]
the valid numbers are the elements $m$ of $O_n$. That way, for example, after Arnaldo says $42= 2^5 + 2^3 + 2^1$, Bernaldo must respond with $5$, $3$ or $1$.
We define the sets $A,B\subset \mathbb{N}$ in the following way. We have $n\in A$ iff Arnaldo, saying $n$ in his first turn, has a winning strategy; analogously, we have $n\in B$ iff Bernaldo has a winning strategy if Arnaldo says $n$ during his first turn. This way,
\[A =\{0, 2, 8, 10,\cdots\}, B = \{1, 3, 4, 5, 6, 7, 9,\cdots\}\]
Define $f:\mathbb{N}\to \mathbb{N}$ by $f(n)=|A\cap \{0,1,\cdots,n-1\}|$. For example, $f(8) = 2$ and $f(11)=4$.
Find
\[\lim_{n\to\infty}\frac{f(n)\log(n)^{2005}}{n}\]
2014 Olympic Revenge, 2
$a)$ Let $n$ a positive integer. Prove that $gcd(n, \lfloor n\sqrt{2} \rfloor)<\sqrt[4]{8}\sqrt{n}$.
$b)$ Prove that there are infinitely many positive integers $n$ such that $gcd(n, \lfloor n\sqrt{2} \rfloor)>\sqrt[4]{7.99}\sqrt{n}$.
2020 LIMIT Category 2, 9
Three points are chosen randomly and independently on a circle. The probability that all three pairwise distance between the points are less than the radius of the circle is $\frac{1}{K}$, $K\in\mathbb{N}$. Find $K$.
2019 Ramnicean Hope, 1
Calculate $ \lim_{n\to\infty }\left(\lim_{x\to 0} \left( -\frac{n}{x}+1+\frac{1}{x}\sum_{r=2}^{n+1}\sqrt[r!]{1+\sin rx}\right)\right) . $
[i]Constantin Rusu[/i]
2012 Turkey Team Selection Test, 1
Let $S_r(n)=1^r+2^r+\cdots+n^r$ where $n$ is a positive integer and $r$ is a rational number. If $S_a(n)=(S_b(n))^c$ for all positive integers $n$ where $a, b$ are positive rationals and $c$ is positive integer then we call $(a,b,c)$ as [i]nice triple.[/i] Find all nice triples.
2001 Austrian-Polish Competition, 2
Let $n$ be a positive integer greater than $2$. Solve in nonnegative real numbers the following system of equations \[x_{k}+x_{k+1}=x_{k+2}^{2}\quad , \quad k=1,2,\cdots,n\] where $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$.
1990 Polish MO Finals, 2
Suppose that $(a_n)$ is a sequence of positive integers such that $\lim\limits_{n\to \infty} \dfrac{n}{a_n}=0$
Prove that there exists $k$ such that there are at least $1990$ perfect squares between $a_1 + a_2 + ... + a_k$ and $a_1 + a_2 + ... + a_{k+1}$.
2007 Estonia National Olympiad, 4
Find all pairs $ (m, n)$ of positive integers such that $ m^n \minus{} n^m \equal{} 3$.
2016 Korea USCM, 5
For $f(x) = \cos\left(\frac{3\sqrt{3}\pi}{8}(x-x^3 ) \right)$, find the value of
$$\lim_{t\to\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} + \lim_{t\to-\infty} \left( \int_0^1 f(x)^t dx \right)^\frac{1}{t} $$
1963 Miklós Schweitzer, 6
Show that if $ f(x)$ is a real-valued, continuous function on the half-line $ 0\leq x < \infty$, and \[ \int_0^{\infty} f^2(x)dx
<\infty\] then the function \[ g(x)\equal{}f(x)\minus{}2e^{\minus{}x}\int_0^x e^tf(t)dt\] satisfies \[ \int _0^{\infty}g^2(x)dx\equal{}\int_0^{\infty}f^2(x)dx.\] [B. Szokefalvi-Nagy]
2006 Harvard-MIT Mathematics Tournament, 2
Compute $\displaystyle\lim_{x\to 0}\dfrac{e^{x\cos x}-1-x}{\sin(x^2)}.$