This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2011 VTRMC, Problem 5

Find $\lim_{x\to\infty}\left((2x)^{1+\frac1{2x}}-x^{1+\frac1x}-x\right)$.

2006 Bulgaria National Olympiad, 2

Let $f:\mathbb{R}^+\to\mathbb{R}^+$ be a function that satisfies for all $x>y>0$ \[f(x+y)-f(x-y)=4\sqrt{f(x)f(y)}\] a) Prove that $f(2x)=4f(x)$ for all $x>0$; b) Find all such functions. [i]Nikolai Nikolov, Oleg Mushkarov [/i]

2008 Harvard-MIT Mathematics Tournament, 6

Determine the value of $ \lim_{n\rightarrow\infty}\sum_{k \equal{} 0}^n\binom{n}{k}^{ \minus{} 1}$.

2003 AIME Problems, 13

A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

2004 Romania National Olympiad, 1

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that for all $x \in \mathbb R$ and for all $n \in \mathbb N^{\ast}$ we have \[ n^2 \int_{x}^{x + \frac{1}{n}} f(t) \, dt = n f(x) + \frac12 . \] [i]Mihai Piticari[/i]

2020 Jozsef Wildt International Math Competition, W38

Let $(a_n)_{n\in\mathbb N}$ be a sequence, given by the recurrence: $$ma_{n+1}+(m-2)a_n-a_{n-1}=0$$ where $m\in\mathbb R$ is a parameter and the first two terms of $a_n$ are fixed known real numbers. Find $m\in\mathbb R$, so that $$\lim_{n\to\infty}a_n=0$$ [i]Proposed by Laurențiu Modan[/i]

2012 Romania National Olympiad, 1

[color=darkred]Let $f,g\colon [0,1]\to [0,1]$ be two functions such that $g$ is monotonic, surjective and $|f(x)-f(y)|\le |g(x)-g(y)|$ , for any $x,y\in [0,1]$ . [list] [b]a)[/b] Prove that $f$ is continuous and that there exists some $x_0\in [0,1]$ with $f(x_0)=g(x_0)$ . [b]b)[/b] Prove that the set $\{x\in [0,1]\, |\, f(x)=g(x)\}$ is a closed interval. [/list][/color]

1990 Flanders Math Olympiad, 4

Let $f:\mathbb{R}^+_0 \rightarrow \mathbb{R}^+_0$ be a strictly decreasing function. (a) Be $a_n$ a sequence of strictly positive reals so that $\forall k \in \mathbb{N}_0:k\cdot f(a_k)\geq (k+1)\cdot f(a_{k+1})$ Prove that $a_n$ is ascending, that $\displaystyle\lim_{k\rightarrow +\infty} f(a_k)$ = 0and that $\displaystyle\lim_{k\rightarrow +\infty} a_k =+\infty$ (b) Prove that there exist such a sequence ($a_n$) in $\mathbb{R}^+_0$ if you know $\displaystyle\lim_{x\rightarrow +\infty} f(x)=0$.

2009 Kyrgyzstan National Olympiad, 8

Tags: function , algebra , limit
Does there exist a function $ f: {\Bbb N} \to {\Bbb N}$ such that $ f(f(n \minus{} 1)) \equal{} f(n \plus{} 1) \minus{} f(n)$ for all $ n > 2$.

2011 Bogdan Stan, 3

Let be a sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ chosen such that the limit of the sequence $ \left( x_{n+2011}-x_n \right)_{n\ge 1} $ exists. Calculate $ \lim_{n\to\infty } \frac{x_n}{n} . $ [i]Cosmin Nițu[/i]

2015 Harvard-MIT Mathematics Tournament, 3

Tags: algebra , limit
Let $p$ be a real number and $c\neq 0$ such that \[c-0.1<x^p\left(\dfrac{1-(1+x)^{10}}{1+(1+x)^{10}}\right)<c+0.1\] for all (positive) real numbers $x$ with $0<x<10^{-100}$. (The exact value $10^{-100}$ is not important. You could replace it with any "sufficiently small number".) Find the ordered pair $(p,c)$.

PEN G Problems, 7

Show that $ \pi$ is irrational.

2005 Today's Calculation Of Integral, 63

For a positive number $x$, let $f(x)=\lim_{n\to\infty} \sum_{k=1}^n \left|\cos \left(\frac{2k+1}{2n}x\right)-\cos \left(\frac{2k-1}{2n}x\right)\right|$ Evaluate \[\lim_{x\rightarrow\infty}\frac{f(x)}{x}\]

2014 Putnam, 3

Let $a_0=5/2$ and $a_k=a_{k-1}^2-2$ for $k\ge 1.$ Compute \[\prod_{k=0}^{\infty}\left(1-\frac1{a_k}\right)\] in closed form.

1972 Miklós Schweitzer, 3

Let $ \lambda_i \;(i=1,2,...)$ be a sequence of distinct positive numbers tending to infinity. Consider the set of all numbers representable in the form \[ \mu= \sum_{i=1}^{\infty}n_i\lambda_i ,\] where $ n_i \geq 0$ are integers and all but finitely many $ n_i$ are $ 0$. Let \[ L(x)= \sum _{\lambda_i \leq x} 1 \;\textrm{and}\ \;M(x)= \sum _{\mu \leq x} 1 \ .\] (In the latter sum, each $ \mu$ occurs as many times as its number of representations in the above form.) Prove that if \[ \lim_{x\rightarrow \infty} \frac{L(x+1)}{L(x)}=1,\] then \[ \lim_{x\rightarrow \infty} \frac{M(x+1)}{M(x)}=1.\] [i]G. Halasz[/i]

1986 Traian Lălescu, 2.3

Discuss $ \lim_{x\to 0}\frac{\lambda +\sin\frac{1}{x} \pm\cos\frac{1}{x}}{x} . $

2013 BMT Spring, 5

Suppose that $c_n=(-1)^n(n+1)$. While the sum $\sum_{n=0}^\infty c_n$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, $a_n$, is $\operatorname{Abel}(a_n)=\lim_{x\to1^-}\sum_{n=0}^\infty a_nx^n$. Find $\operatorname{Abel}(c_n)$.

2014 IMS, 4

Let $(X,d)$ be a metric space and $f:X \to X$ be a function such that $\forall x,y\in X : d(f(x),f(y))=d(x,y)$. $\text{a})$ Prove that for all $x \in X$, $\lim_{n \rightarrow +\infty} \frac{d(x,f^n(x))}{n}$ exists, where $f^n(x)$ is $\underbrace{f(f(\cdots f(x)}_{n \text{times}} \cdots ))$. $\text{b})$ Prove that the amount of the limit does [b][u]not[/u][/b] depend on choosing $x$.

1998 Vietnam Team Selection Test, 1

Let $f(x)$ be a real function such that for each positive real $c$ there exist a polynomial $P(x)$ (maybe dependent on $c$) such that $| f(x) - P(x)| \leq c \cdot x^{1998}$ for all real $x$. Prove that $f$ is a real polynomial.

2024 ISI Entrance UGB, P1

Find, with proof, all possible values of $t$ such that \[\lim_{n \to \infty} \left( \frac{1 + 2^{1/3} + 3^{1/3} + \dots + n^{1/3}}{n^t} \right ) = c\] for some real $c>0$. Also find the corresponding values of $c$.

1971 Miklós Schweitzer, 6

Let $ a(x)$ and $ r(x)$ be positive continuous functions defined on the interval $ [0,\infty)$, and let \[ \liminf_{x \rightarrow \infty} (x-r(x)) >0.\] Assume that $ y(x)$ is a continuous function on the whole real line, that it is differentiable on $ [0, \infty)$, and that it satisfies \[ y'(x)=a(x)y(x-r(x))\] on $ [0, \infty)$. Prove that the limit \[ \lim_{x \rightarrow \infty}y(x) \exp \left\{ -%Error. "diaplaymath" is a bad command. \int_0^x a(u)du \right \}\] exists and is finite. [i]I. Gyori[/i]

2010 Today's Calculation Of Integral, 579

Let $ a$ be a positive real number. Find $ \lim_{n\to\infty} \frac{(n\plus{}1)^a\plus{}(n\plus{}2)^a\plus{}\cdots \plus{}(n\plus{}n)^a}{1^{a}\plus{}2^{a}\plus{}\cdots \plus{}n^{a}}$

2007 Today's Calculation Of Integral, 178

Let $f(x)$ be a differentiable function such that $f'(x)+f(x)=4xe^{-x}\sin 2x,\ \ f(0)=0.$ Find $\lim_{n\to\infty}\sum_{k=1}^{n}f(k\pi).$

PEN E Problems, 14

Prove that there do not exist polynomials $ P$ and $ Q$ such that \[ \pi(x)\equal{}\frac{P(x)}{Q(x)}\] for all $ x\in\mathbb{N}$.

2011 Laurențiu Duican, 4

[b]a)[/b] Provide an example of a sequence $ \left( a_n \right)_{n\ge 1} $ of positive real numbers whose series converges, and has the property that each member (sequence) of the family of sequences $ \left(\left( n^{\alpha } a_n \right)_{n\ge 1}\right)_{\alpha >0} $ is unbounded. [b]b)[/b] Let $ \left( b_n \right)_{n\ge 1} $ be a sequence of positive real numbers, having the property that $$ nb_{n+1}\leqslant b_1+b_2+\cdots +b_n, $$ for any natural number $ n. $ Prove that the following relations are equivalent: $\text{(i)} $ there exists a convergent member (series) of the family of series $ \left( \sum_{i=1}^{\infty } b_i^{\beta } \right)_{\beta >0} $ $ \text{(ii)} $ there exists a member (sequence) of the family of sequences $ \left(\left( n^{\beta } b_n \right)_{n\ge 1}\right)_{\beta >0} $ that is convergent to $ 0. $ [i]Eugen Păltănea[/i]