This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

1970 IMO Shortlist, 10

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

1984 IMO Longlists, 31

Let $f_1(x) = x^3+a_1x^2+b_1x+c_1 = 0$ be an equation with three positive roots $\alpha>\beta>\gamma > 0$. From the equation $f_1(x) = 0$, one constructs the equation $f_2(x) = x^3 +a_2x^2 +b_2x+c_2 = x(x+b_1)^2 -(a_1x+c_1)^2 = 0$. Continuing this process, we get equations $f_3,\cdots, f_n$. Prove that \[\lim_{n\to\infty}\sqrt[2^{n-1}]{-a_n} = \alpha\]

2008 ITest, 99

Given a convex, $n$-sided polygon $P$, form a $2n$-sided polygon $\text{clip}(P)$ by cutting off each corner of $P$ at the edges' trisection points. In other words, $\text{clip}(P)$ is the polygon whose vertices are the $2n$ edge trisection points of $P$, connected in order around the boundary of $P$. Let $P_1$ be an isosceles trapezoid with side lengths $13,13,13,$ and $3$, and for each $i\geq 2$, let $P_i=\text{clip}(P_{i-1}).$ This iterative clipping process approaches a limiting shape $P_\infty=\lim_{i\to\infty}P_i$. If the difference of the areas of $P_{10}$ and $P_\infty$ is written as a fraction $\tfrac xy$ in lowest terms, calculate the number of positive integer factors of $x\cdot y$.

1974 IMO Longlists, 25

Let $f : \mathbb R \to \mathbb R$ be of the form $f(x) = x + \epsilon \sin x,$ where $0 < |\epsilon| \leq 1.$ Define for any $x \in \mathbb R,$ \[x_n=\underbrace{f \ o \ \ldots \ o \ f}_{n \text{ times}} (x).\] Show that for every $x \in \mathbb R$ there exists an integer $k$ such that $\lim_{n\to \infty } x_n = k\pi.$

2007 Gheorghe Vranceanu, 3

Tags: limit , calculus
$ \lim_{n\to\infty } \frac{1}{2^n}\left( \left( \frac{a}{a+b}+\frac{b}{b+c} \right)^n +\left( \frac{b}{b+c}+\frac{c}{c+a} \right)^n +\left( \frac{c}{c+a}+\frac{a}{a+b} \right)^n \right) ,\quad a,b,c>0 $

2009 Albania Team Selection Test, 2

Find all the functions $ f :\mathbb{R}\mapsto\mathbb{R} $ with the following property: $ \forall x$ $f(x)= f(x/2) + (x/2)f'(x)$

2005 VJIMC, Problem 4

Let $(x_n)_{n\ge2}$ be a sequence of real numbers such that $x_2>0$ and $x_{n+1}=-1+\sqrt[n]{1+nx_n}$ for $n\ge2$. Find (a) $\lim_{n\to\infty}x_n$, (b) $\lim_{n\to\infty}nx_n$.

1978 Miklós Schweitzer, 10

Let $ Y_n$ be a binomial random variable with parameters $ n$ and $ p$. Assume that a certain set $ H$ of positive integers has a density and that this density is equal to $ d$. Prove the following statements: (a) $ \lim _{n \rightarrow \infty}P(Y_n\in H)\equal{}d$ if $ H$ is an arithmetic progression. (b) The previous limit relation is not valid for arbitrary $ H$. (c) If $ H$ is such that $ P(Y_n \in H)$ is convergent, then the limit must be equal to $ d$. [i]L. Posa[/i]

2005 IberoAmerican Olympiad For University Students, 1

Let $P(x,y)=(x^2y^3,x^3y^5)$, $P^1=P$ and $P^{n+1}=P\circ P^n$. Also, let $p_n(x)$ be the first coordinate of $P^n(x,x)$, and $f(n)$ be the degree of $p_n(x)$. Find \[\lim_{n\to\infty}f(n)^{1/n}\]

2007 District Olympiad, 3

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that: (a) $\lim_{x \to \infty}f(x)$ exists; (b) $f(x) = \int_{x+1}^{x+2}f(t) \, dt$, for all $x \in \mathbb R$.

1993 Dutch Mathematical Olympiad, 3

A sequence of numbers is defined by $ u_1\equal{}a, u_2\equal{}b$ and $ u_{n\plus{}1}\equal{}\frac{u_n\plus{}u_{n\minus{}1}}{2}$ for $ n \ge 2$. Prove that $ \displaystyle\lim_{n\to\infty}u_n$ exists and express its value in terms of $ a$ and $ b$.

1956 Putnam, B6

Given $T_1 =2, T_{n+1}= T_{n}^{2} -T_n +1$ for $n>0.$ Prove: (i) If $m \ne n,$ $T_m$ and $T_n$ have no common factor greater than $1.$ (ii) $\sum_{i=1}^{\infty} \frac{1}{T_i }=1.$