This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 837

2018 Brazil Undergrad MO, 10

How many ordered pairs of real numbers $ (a, b) $ satisfy equality $\lim_{x \to 0} \frac{\sin^2x}{e^{ax}-2bx-1}= \frac{1}{2}$?

2020 LIMIT Category 1, 11

Tags: geometry , limit
In $\triangle ABC$, $\angle A=30^{\circ}$, $BC=13$. Given $2$ circles $\gamma_1, \gamma_2$ ith radius $r_1,r_2$ contain $A$ and touch $BC$ at $B$ and $C$ respectively. Find $r_1r_2$.

2008 Alexandru Myller, 3

Let be a $ \beta >1. $ Calculate $ \lim_{n\to\infty} \frac{k(n)}{n} ,$ where $ k(n) $ is the smallest natural number that satisfies the inequality $ (1+n)^k\ge n^k\beta . $ [i]Neculai Hârţan[/i]

2006 Vietnam National Olympiad, 4

Given is the function $f(x)=-x+\sqrt{(x+a)(x+b)}$, where $a$, $b$ are distinct given positive real numbers. Prove that for all real numbers $s\in (0,1)$ there exist only one positive real number $\alpha$ such that \[ f(\alpha)=\sqrt [s]{\frac{a^s+b^s}{2}} . \]

2012 Today's Calculation Of Integral, 854

Given a figure $F: x^2+\frac{y^2}{3}=1$ on the coordinate plane. Denote by $S_n$ the area of the common part of the $n+1' s$ figures formed by rotating $F$ of $\frac{k}{2n}\pi\ (k=0,\ 1,\ 2,\ \cdots,\ n)$ radians counterclockwise about the origin. Find $\lim_{n\to\infty} S_n$.

2011 Indonesia TST, 2

Find the limit, when $n$ tends to the infinity, of $$\frac{\sum_{k=0}^{n} {{2n} \choose {2k}} 3^k} {\sum_{k=0}^{n-1} {{2n} \choose {2k+1}} 3^k}$$

1984 Iran MO (2nd round), 5

Tags: limit , algebra
Suppose that \[S_n=\frac 59 \times \frac{14}{20} \times \frac{27}{35} \times \cdots \times \frac{2n^2-n-1}{2n^2+n-1}\] Find $\lim_{n \to \infty} S_n.$

2002 Romania National Olympiad, 2

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that has limits at any point and has no local extrema. Show that: $a)$ $f$ is continuous; $b)$ $f$ is strictly monotone.

2014 Uzbekistan National Olympiad, 2

Find all functions $f:R\rightarrow R$ such that \[ f(x^3)+f(y^3)=(x+y)(f(x^2)+f(y^2)-f(xy)) \] for all $x,y\in R$.

2003 Brazil National Olympiad, 2

Tags: function , limit , algebra
Let $f(x)$ be a real-valued function defined on the positive reals such that (1) if $x < y$, then $f(x) < f(y)$, (2) $f\left(2xy\over x+y\right) \geq {f(x) + f(y)\over2}$ for all $x$. Show that $f(x) < 0$ for some value of $x$.

2012 Today's Calculation Of Integral, 819

For real numbers $a,\ b$ with $0\leq a\leq \pi,\ a<b$, let $I(a,\ b)=\int_{a}^{b} e^{-x} \sin x\ dx.$ Determine the value of $a$ such that $\lim_{b\rightarrow \infty} I(a,\ b)=0.$

ICMC 7, 6

Let $f:\mathbb{N}\to\mathbb{N}$ be a bijection of the positive integers. Prove that at least one of the following limits is true: \[\lim_{N\to\infty}\sum_{n=1}^{N}\frac{1}{n+f(n)}=\infty;\qquad\lim_{N\to\infty}\sum_{n=1}^N\left(\frac{1}{n}-\frac{1}{f(n)}\right)=\infty.\][i]Proposed by Dylan Toh[/i]