Found problems: 823
2004 Germany Team Selection Test, 1
Let $a_{ij}$ $i=1,2,3$; $j=1,2,3$ be real numbers such that $a_{ij}$ is positive for $i=j$ and negative for $i\neq j$.
Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers \[a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}\] are either all negative, all positive, or all zero.
[i]Proposed by Kiran Kedlaya, USA[/i]
2022 SEEMOUS, 3
Let $\alpha \in \mathbb{C}\setminus \{0\}$ and $A \in \mathcal{M}_n(\mathbb{C})$, $A \neq O_n$, be such that
$$A^2 + (A^*)^2 = \alpha A\cdot A^*,$$
where $A^* = (\bar A)^T.$ Prove that $\alpha \in \mathbb{R}$, $|\alpha| \le 2$. and $A\cdot A^* = A^*\cdot A.$
1997 Miklós Schweitzer, 4
An elementary change in a 0-1 matrix is a change in an element and with it all its horizontal, vertical, and diagonal neighbors (0 to 1 or 1 to 0). Can any 1791 x 1791 0-1 matrix be transformed into a zero matrix with elementary changes?
Oliforum Contest II 2009, 5
Let $ X: \equal{} \{x_1,x_2,\ldots,x_{29}\}$ be a set of $ 29$ boys: they play with each other in a tournament of Pro Evolution Soccer 2009, in respect of the following rules:
[list]i) every boy play one and only one time against each other boy (so we can assume that every match has the form $ (x_i \text{ Vs } x_j)$ for some $ i \neq j$);
ii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the win of the boy $ x_i$, then $ x_i$ gains $ 1$ point, and $ x_j$ doesn’t gain any point;
iii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the parity of the two boys, then $ \frac {1}{2}$ point is assigned to both boys.
[/list]
(We assume for simplicity that in the imaginary match $ (x_i \text{ Vs } x_i)$ the boy $ x_i$ doesn’t gain any point).
Show that for some positive integer $ k \le 29$ there exist a set of boys $ \{x_{t_1},x_{t_2},\ldots,x_{t_k}\} \subseteq X$ such that, for all choice of the positive integer $ i \le 29$, the boy $ x_i$ gains always a integer number of points in the total of the matches $ \{(x_i \text{ Vs } x_{t_1}),(x_i \text{ Vs } x_{t_2}),\ldots, (x_i \text{ Vs } x_{t_k})\}$.
[i](Paolo Leonetti)[/i]
2023 SEEMOUS, P1
Prove that if $A{}$ and $B{}$ are $n\times n$ matrices with complex entries which satisfy \[A=AB-BA+A^2B-2ABA+BA^2+A^2BA-ABA^2,\]then $\det(A)=0$.
2012 Iran MO (3rd Round), 4
Prove that if $n$ is large enough, in every $n\times n$ square that a natural number is written on each one of its cells, one can find a subsquare from the main square such that the sum of the numbers is this subsquare is divisible by $1391$.
1980 Miklós Schweitzer, 4
Let $ T \in \textsl{SL}(n,\mathbb{Z})$, let $ G$ be a nonsingular $ n \times n$ matrix with integer elements, and put $ S\equal{}G^{\minus{}1}TG$. Prove that there is a natural number $ k$ such that $ S^k \in \textsl{SL}(n,\mathbb{Z})$.
[i]Gy. Szekeres[/i]
2010 VJIMC, Problem 2
If $A,B\in M_2(C)$ such that $AB-BA=B^2$ then prove that
\[AB=BA\]
2003 Romania National Olympiad, 2
Let be eight real numbers $ 1\le a_1< a_2< a_3< a_4,x_1<x_2<x_3<x_4. $ Prove that
$$ \begin{vmatrix}a_1^{x_1} & a_1^{x_2} & a_1^{x_3} & a_1^{x_4} \\
a_2^{x_1} & a_2^{x_2} & a_2^{x_3} & a_2^{x_4} \\
a_3^{x_1} & a_3^{x_2} & a_3^{x_3} & a_3^{x_4} \\
a_4^{x_1} & a_4^{x_2} & a_4^{x_3} & a_4^{x_4} \\
\end{vmatrix} >0. $$
[i]Marian Andronache, Ion Savu[/i]
1970 IMO Longlists, 26
Consider a finite set of vectors in space $\{a_1, a_2, ... , a_n\}$ and the set $E$ of all vectors of the form $x=\sum_{i=1}^{n}{\lambda _i a_i}$, where $\lambda _i \in \mathbb{R}^{+}\cup \{0\}$. Let $F$ be the set consisting of all the vectors in $E$ and vectors parallel to a given plane $P$. Prove that there exists a set of vectors $\{b_1, b_2, ... , b_p\}$ such that $F$ is the set of all vectors $y$ of the form $y=\sum_{i=1}^{p}{\mu _i b_i}$, where $\mu _i \in \mathbb{R}^{+}\cup \{0\}$.
1971 IMO Longlists, 43
Let $ A \equal{} (a_{ij})$, where $ i,j \equal{} 1,2,\ldots,n$, be a square matrix with all $ a_{ij}$ non-negative integers. For each $ i,j$ such that $ a_{ij} \equal{} 0$, the sum of the elements in the $ i$th row and the $ j$th column is at least $ n$. Prove that the sum of all the elements in the matrix is at least $ \frac {n^2}{2}$.
1995 Putnam, 3
To each number with $n^2$ digits, we associate the $n\times n$ determinant of the matrix obtained by writing the digits of the number in order along the rows. For example : $8617\mapsto \det \left(\begin{matrix}{\;8}& 6\;\\ \;1 &{ 7\;}\end{matrix}\right)=50$.
Find, as a function of $n$, the sum of all the determinants associated with $n^2$-digit integers. (Leading digits are assumed to be nonzero; for example, for $n = 2$, there are $9000$ determinants.)
2009 AMC 10, 22
Two cubical dice each have removable numbers $ 1$ through $ 6$. The twelve numbers on the two dice are removed, put into a bag, then drawn one at a time and randomly reattached to the faces of the cubes, one number to each face. The dice are then rolled and the numbers on the two top faces are added. What is the probability that the sum is $ 7$?
$ \textbf{(A)}\ \frac{1}{9} \qquad
\textbf{(B)}\ \frac{1}{8} \qquad
\textbf{(C)}\ \frac{1}{6} \qquad
\textbf{(D)}\ \frac{2}{11} \qquad
\textbf{(E)}\ \frac{1}{5}$
1999 IMC, 5
Suppose that $2n$ points of an $n\times n$ grid are marked. Show that for some $k > 1$ one can select $2k$ distinct marked points, say $a_1,...,a_{2k}$, such that $a_{2i-1}$ and $a_{2i}$ are in the same row, $a_{2i}$ and $a_{2i+1}$ are in the same column, $\forall i$, indices taken mod 2n.
2008 Putnam, A2
Alan and Barbara play a game in which they take turns filling entries of an initially empty $ 2008\times 2008$ array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
2008 Moldova Team Selection Test, 4
Find the number of even permutations of $ \{1,2,\ldots,n\}$ with no fixed points.
2010 Czech-Polish-Slovak Match, 3
Let $p$ be a prime number. Prove that from a $p^2\times p^2$ array of squares, we can select $p^3$ of the squares such that the centers of any four of the selected squares are not the vertices of a rectangle with sides parallel to the edges of the array.
2015 Romania National Olympiad, 4
Let be three natural numbers $ k,m,n $ an $ m\times n $ matrix $ A, $ an $ n\times m $ matrix $ B, $ and $ k $ complex numbers $ a_0,a_1,\ldots ,a_k $ such that the following conditions hold.
$ \text{(i)}\quad m\ge n\ge 2 $
$ \text{(ii)}\quad a_0I_m+a_1AB+a_2(AB)^2+\cdots +a_k(AB)^k=O_m $
$ \text{(iii)}\quad a_0I_m+a_1BA+a_2(BA)^2+\cdots +a_k(BA)^k\neq O_n $
Prove that $ a_0=0. $
1995 Putnam, 6
Suppose that each of $n$ people writes down the numbers $1, 2, 3$ in random order in one column of a $3\times n$ matrix, with all orders equally likely and with the orders for different columns independent of each other. Let the row sums $a, b, c$ of the resulting matrix be rearranged (if necessary) so that $a \le b \le c$. Show that for some $n \ge 1995$ ,it is at least four times as likely that both $b = a+1$ and $c = a+2$ as that $a = b = c$.
2008 Harvard-MIT Mathematics Tournament, 6
A Sudoku matrix is defined as a $ 9\times9$ array with entries from $ \{1, 2, \ldots , 9\}$ and with the constraint that each row, each column, and each of the nine $ 3 \times 3$ boxes that tile the array contains each digit from $ 1$ to $ 9$ exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal probability of being chosen). We know two of the squares in this matrix, as shown. What is the probability that the square marked by ? contains the digit $ 3$?
$ \setlength{\unitlength}{6mm} \begin{picture}(9,9)(0,0) \multiput(0,0)(1,0){10}{\line(0,1){9}} \multiput(0,0)(0,1){10}{\line(1,0){9}} \linethickness{1.2pt} \multiput(0,0)(3,0){4}{\line(0,1){9}} \multiput(0,0)(0,3){4}{\line(1,0){9}} \put(0,8){\makebox(1,1){1}} \put(1,7){\makebox(1,1){2}} \put(3,6){\makebox(1,1){?}} \end{picture}$
1997 Brazil Team Selection Test, Problem 3
Find all positive integers $x>1, y$ and primes $p,q$ such that $p^{x}=2^{y}+q^{x}$
2010 Contests, 3
Let $p$ be a prime number. Prove that from a $p^2\times p^2$ array of squares, we can select $p^3$ of the squares such that the centers of any four of the selected squares are not the vertices of a rectangle with sides parallel to the edges of the array.
2010 China Second Round Olympiad, 4
the code system of a new 'MO lock' is a regular $n$-gon,each vertex labelled a number $0$ or $1$ and coloured red or blue.it is known that for any two adjacent vertices,either their numbers or colours coincide.
find the number of all possible codes(in terms of $n$).
2021 Alibaba Global Math Competition, 4
Let $n$ be a positive integer. For any positive integer $k$, let $0_k=diag\{\underbrace{0, ...,0}_{k}\}$ be a $k \times k$ zero matrix. Let $Y=\begin{pmatrix}
0_n & A \\
A^t & 0_{n+1}
\end{pmatrix}$ be a $(2n+1) \times (2n+1)$ where $A=(x_{i, j})_{1\leq i \leq n, 1\leq j \leq n+1}$ is a $n \times (n+1)$ real matrix. Let $A^T$ be transpose matrix of $A$ i.e. $(n+1) \times n$ matrix, the element of $(j, i)$ is $x_{i, j}$.
(a) Let complex number $\lambda$ be an eigenvalue of $k \times k$ matrix $X$. If there exists nonzero column vectors $v=(x_1, ..., x_k)^t$ such that $Xv=\lambda v$. Prove that 0 is the eigenvalue of $Y$ and the other eigenvalues of $Y$ can be expressed as a form of $\pm \sqrt{\lambda}$ where nonnegative real number $\lambda$ is the eigenvalue of $AA^t$.
(b) Let $n=3$ and $a_1$, $a_2$, $a_3$, $a_4$ are $4$ distinct positive real numbers. Let $a=\sqrt[]{\sum_{1\leq i \leq 4}^{}a^{2}_{i}}$ and $x_{i,j}=a_i\delta_{i,j}+a_j\delta_{4,j}-\frac{1}{a^2}(a^2_{i}+a^2_{4})a_j$ where $1\leq i \leq 3, 1\leq j \leq 4$, $\delta_{i, j}=
\begin{cases}
1 \text{ if } i=j\\
0 \text{ if } i\neq j\\
\end{cases}\,$. Prove that $Y$ has 7 distinct eigenvalue.
2004 District Olympiad, 1
Let $n\geq 2$ and $1 \leq r \leq n$. Consider the set $S_r=(A \in M_n(\mathbb{Z}_2), rankA=r)$. Compute the sum $\sum_{X \in S_r}X$