Found problems: 823
1999 Miklós Schweitzer, 5
Let $\alpha>-2$ , $n\in \mathbb{N}$ and $y_1,\cdots,y_n$ be the solutions to the system of equations:
$\sum_{j=1}^n \frac{y_j}{j+k+\alpha}= \frac{1}{n+1+k+\alpha}$ , $k=1,\cdots,n$
Prove that $y_{j-1}y_{j+1}\leq y_j^2 \,\forall 1<j<n$
2023 Miklós Schweitzer, 10
Let $n\geqslant2$ be a natural number. Show that there is no real number $c{}$ for which \[\exp\left(\frac{T+S}{2}\right)\leqslant c\cdot \frac{\exp(T)+\exp(S)}{2}\]is satisfied for any self-adjoint $n\times n$ complex matrices $T{}$ and $S{}$. (If $A{}$ and $B{}$ are self-adjoint $n\times n$ matrices, $A\leqslant B$ means that $B-A$ is positive semi-definite.)
1991 Vietnam Team Selection Test, 3
Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have:
\[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\]
Show that this sequence has a finite limit. Determine this limit.
2011 SEEMOUS, Problem 2
Let $A=(a_{ij})$ be a real $n\times n$ matrix such that $A^n\ne0$ and $a_{ij}a_{ji}\le0$ for all $i,j$. Prove that there exist two nonreal numbers among eigenvalues of $A$.
2006 Romania Team Selection Test, 3
Let $n>1$ be an integer. A set $S \subset \{ 0,1,2, \ldots, 4n-1\}$ is called [i]rare[/i] if, for any $k\in\{0,1,\ldots,n-1\}$, the following two conditions take place at the same time
(1) the set $S\cap \{4k-2,4k-1,4k, 4k+1, 4k+2 \}$ has at most two elements;
(2) the set $S\cap \{4k+1,4k+2,4k+3\}$ has at most one element.
Prove that the set $\{0,1,2,\ldots,4n-1\}$ has exactly $8 \cdot 7^{n-1}$ rare subsets.
1995 Putnam, 6
Suppose that each of $n$ people writes down the numbers $1, 2, 3$ in random order in one column of a $3\times n$ matrix, with all orders equally likely and with the orders for different columns independent of each other. Let the row sums $a, b, c$ of the resulting matrix be rearranged (if necessary) so that $a \le b \le c$. Show that for some $n \ge 1995$ ,it is at least four times as likely that both $b = a+1$ and $c = a+2$ as that $a = b = c$.
2018 District Olympiad, 1
Show that if $n\ge 2$ is an integer, then there exist invertible matrices $A_1, A_2, \ldots, A_n \in \mathcal{M}_2(\mathbb{R})$ with non-zero entries such that:
\[A_1^{-1} + A_2^{-1} + \ldots + A_n^{-1} = (A_1 + A_2 + \ldots + A_n)^{-1}.\]
[hide=Edit.]
The $77777^{\text{th}}$ topic in College Math :coolspeak:
[/hide]
2019 Miklós Schweitzer, 10
Let $A$ and $B$ be positive self-adjoint operators on a complex Hilbert space $H$. Prove that
\[\limsup_{n \to \infty} \|A^n x\|^{1/n} \le
\limsup_{n \to \infty} \|B^n x\|^{1/n}\]
holds for every $x \in H$ if and only if $A^n \le B^n$ for each positive integer $n$.
2007 Nicolae Păun, 1
Prove that $ \exists X,Y,Z\in \mathcal{M}_n(\mathbb{C})$ such that
a)$ X^2\plus{}Y^2\equal{}A$
b) $ X^3\plus{}Y^3\plus{}Z^3\equal{}A$ , where $ A\in \mathcal{M}_n(\mathbb{C})$
2004 Romania Team Selection Test, 9
Let $n\geq 2$ be a positive integer, and $X$ a set with $n$ elements. Let $A_{1},A_{2},\ldots,A_{101}$ be subsets of $X$ such that the union of any $50$ of them has more than $\frac{50}{51}n$ elements.
Prove that among these $101$ subsets there exist $3$ subsets such that any two of them have a common element.
2023 CIIM, 3
Given a $3 \times 3$ symmetric real matrix $A$, we define $f(A)$ as a $3 \times 3$ matrix with the same eigenvectors of $A$ such that if $A$ has eigenvalues $a$, $b$, $c$, then $f(A)$ has eigenvalues $b+c$, $c+a$, $a+b$ (in that order). We define a sequence of symmetric real $3\times3$ matrices $A_0, A_1, A_2, \ldots$ such that $A_{n+1} = f(A_n)$ for $n \geq 0$. If the matrix $A_0$ has no zero entries, determine the maximum number of indices $j \geq 0$ for which the matrix $A_j$ has any null entries.
1998 Iran MO (3rd Round), 3
Let $A,B$ be two matrices with positive integer entries such that sum of entries of a row in $A$ is equal to sum of entries of the same row in $B$ and sum of entries of a column in $A$ is equal to sum of entries of the same column in $B$. Show that there exists a sequence of matrices $A_1,A_2,A_3,\cdots , A_n$ such that all entries of the matrix $A_i$ are positive integers and in the sequence
\[A=A_0,A_1,A_2,A_3,\cdots , A_n=B,\]
for each index $i$, there exist indexes $k,j,m,n$ such that
\[\begin{array}{*{20}{c}}
\\
{{A_{i + 1}} - {A_{i}} = }
\end{array}\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
\quad \quad \ \ j& \ \ \ {k}
\end{array}} \\
{\begin{array}{*{20}{c}}
m \\
n
\end{array}\left( {\begin{array}{*{20}{c}}
{ + 1}&{ - 1} \\
{ - 1}&{ + 1}
\end{array}} \right)}
\end{array} \ \text{or} \ \begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
\quad \quad \ \ j& \ \ \ {k}
\end{array}} \\
{\begin{array}{*{20}{c}}
m \\
n
\end{array}\left( {\begin{array}{*{20}{c}}
{ - 1}&{ + 1} \\
{ + 1}&{ - 1}
\end{array}} \right)}
\end{array}.\]
That is, all indices of ${A_{i + 1}} - {A_{i}}$ are zero, except the indices $(m,j), (m,k), (n,j)$, and $(n,k)$.
2013 AMC 12/AHSME, 13
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
2009 Finnish National High School Mathematics Competition, 1
In a plane, the point $(x,y)$ has temperature $x^2+y^2-6x+4y$. Determine the coldest point of the plane and its temperature.
1997 Romania National Olympiad, 1
Let $m \ge 2$ and $n \ge 1$ be integers and $A=(a_{ij})$ a square matrix of order $n$ with integer entries. Prove that for any permutation $\sigma \in S_n$ there is a function $\varepsilon : \{1,2,\ldots,n\} \to \{0,1\}$ such that replacing the entries $a_{\sigma(1)1},$ $a_{\sigma(2)2}, $ $\ldots,$ $a_{\sigma(n)n}$ of $A$ respectively by $$a_{\sigma(1)1}+\varepsilon(1), ~a_{\sigma(2)2}+\varepsilon(2), ~\ldots, ~a_{\sigma(n)n}+\varepsilon(n),$$ the determinant of the matrix $A_{\varepsilon}$ thus obtained is not divisible by $m.$
2003 VJIMC, Problem 2
Let $ \{D_1, D_2, ..., D_n \}$ be a set of disks in the Euclidean plane. Let $ a_ {i, j} = S (D_i \cap D_j) $ be the area of $ D_i \cap D_j $. Prove that $$ \sum_ {i = 1} ^ n \sum_ {j = 1} ^ n a_ {i, j} x_ix_j \geq 0 $$ for any real numbers $ x_1, x_2, ..., x_n $.
2006 IMC, 4
Let $v_{0}$ be the zero ector and let $v_{1},...,v_{n+1}\in\mathbb{R}^{n}$ such that the Euclidian norm $|v_{i}-v_{j}|$ is rational for all $0\le i,j\le n+1$. Prove that $v_{1},...,v_{n+1}$ are linearly dependent over the rationals.
1975 Spain Mathematical Olympiad, 3
We will designate by $Z_{(5)}$ a certain subset of the set $Q$ of the rational numbers . A rational belongs to $Z_{(5)}$ if and only if there exist equal fraction to this rational such that $5$ is not a divisor of its denominator. (For example, the rational number $13/10$ does not belong to $Z_{(5)}$ , since the denominator of all fractions equal to $13/10$ is a multiple of $5$. On the other hand, the rational $75/10$ belongs to $Z_{(5)}$ since that $75/10 = 15/12$).
Reasonably answer the following questions:
a) What algebraic structure (semigroup, group, etc.) does $Z_{(5)}$ have with respect to the sum?
b) And regarding the product?
c) Is $Z_{(5)}$ a subring of $Q$?
d) Is $Z_{(5)}$ a vector space?
2006 China Team Selection Test, 3
Let $a_{i}$ and $b_{i}$ ($i=1,2, \cdots, n$) be rational numbers such that for any real number $x$ there is:
\[x^{2}+x+4=\sum_{i=1}^{n}(a_{i}x+b)^{2}\]
Find the least possible value of $n$.
2013 Gheorghe Vranceanu, 2
Given a natural number $ n\ge 2 $ and an $ n\times n $ matrix with integer entries, consider the multiplicative monoid
$$ M=\{ M_k=I+kA| k\in \mathbb{Z} \} . $$
[b]a)[/b] Prove that $ M $ is a commutative group if the [url=https://en.wikipedia.org/wiki/Nilpotent_matrix]index[/url] of $ A $ is $ 2. $
[b]b)[/b] Prove that all elements of $ M $ are units if $ M_1,M_2,\ldots M_{2n} $ are all units.
2005 SNSB Admission, 1
[b]a)[/b] Let be three vectorial spaces $ E,F,G, $ where $ F $ has finite dimension, and $ E $ is a subspace of $ F. $ Prove that if the function $ T:F\longrightarrow G $ is linear, then
$$ \dim TF -\dim TE\le \dim F-\dim E. $$
[b]b)[/b] Let $ A,B,C $ be matrices of real numbers. Prove that
$$ \text{rang} (AB) +\text{rang} (BC) \le \text{rang} (ABC) +\text{rang} (B) . $$
2013 District Olympiad, 3
Let $A$ be an non-invertible of order $n$, $n>1$, with the elements in the set of complex numbers, with all the elements having the module equal with 1
a)Prove that, for $n=3$, two rows or two columns of the $A$ matrix are proportional
b)Does the conclusion from the previous exercise remains true for $n=4$?
2003 Alexandru Myller, 1
Let be the sequence of sets $ \left(\left\{ A\in\mathcal{M}_2\left(\mathbb{R} \right) | A^{n+1} =2003^nA\right\}\right)_{n\ge 1} . $
[b]a)[/b] Prove that each term of the above sequence hasn't a finite cardinal.
[b]b)[/b] Determine the intersection of the third element of the above sequence with the $ 2003\text{rd} $ element.
[i]Gheorghe Iurea[/i]
[hide=Note]Similar with [url]https://artofproblemsolving.com/community/c7h1943241p13387495[/url].[/hide]
KoMaL A Problems 2022/2023, A.837
Let all the edges of tetrahedron \(A_1A_2A_3A_4\) be tangent to sphere \(S\). Let \(\displaystyle a_i\) denote the length of the tangent from \(A_i\) to \(S\). Prove that
\[\bigg(\sum_{i=1}^4 \frac 1{a_i}\bigg)^{\!\!2}> 2\bigg(\sum_{i=1}^4 \frac1{a_i^2}\bigg). \]
[i]Submitted by Viktor Vígh, Szeged[/i]
2019 Korea USCM, 8
$M_n(\mathbb{C})$ is the vector space of all complex $n\times n$ matrices. Given a linear map $T:M_n(\mathbb{C})\to M_n(\mathbb{C})$ s.t. $\det (A)=\det(T(A))$ for every $A\in M_n(\mathbb{C})$.
(1) If $T(A)$ is the zero matrix, then show that $A$ is also the zero matrix.
(2) Prove that $\text{rank} (A)=\text{rank} (T(A))$ for any $A\in M_n(\mathbb{C})$.