This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

2008 Alexandru Myller, 1

Let be a real $ 4\times 4 $ real matrix with $ \text{det} \left( A^2-I\right) <0. $ Prove that there is a number $ \alpha\in (-1,1) $ so that $ A+\alpha I $ is singular. [i]Mihai Haivas[/i]

1971 IMO Longlists, 36

The matrix \[A=\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix}\] satisfies the inequality $\sum_{j=1}^n |a_{j1}x_1 + \cdots+ a_{jn}x_n| \leq M$ for each choice of numbers $x_i$ equal to $\pm 1$. Show that \[|a_{11} + a_{22} + \cdots+ a_{nn}| \leq M.\]

2007 IberoAmerican Olympiad For University Students, 4

Consider an infinite sequence $a_1,a_2,\cdots$ whose terms all belong to $\left\{1,2\right\}$. A positive integer with $n$ digits is said to be [i]good[/i] if its decimal representation has the form $a_ra_{r+1}\cdots a_{r+(n-1)}$, for some positive integer $r$. Suppose that there are at least $2008$ [i]good[/i] numbers with a million digits. Prove that there are at least $2008$ [i]good[/i] numbers with $2007$ digits.

2024 Brazil Undergrad MO, 5

Let \( A \) be a \( 2 \times 2 \) matrix with integer entries and \(\det A \neq 0\). If the sequence \(\operatorname{tr}(A^n)\), for \( n = 1, 2, 3, \ldots \), is bounded, show that \[ A^{12} = I \quad \text{or} \quad (A^2 - I)^2 = O. \] Here, \( I \) and \( O \) denote the identity and zero matrices, respectively, and \(\operatorname{tr}\) denotes the trace of the matrix (the sum of the elements on the main diagonal).

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 1

Introduce a standard scalar product in $\mathbb{R}^4.$ Let $V$ be a partial vector space in $\mathbb{R}^4$ produced by $\left( \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} \right),\left( \begin{array}{c} 1 \\-1 \\ 1 \\ -1 \end{array} \right).$ Find a pair of base of orthogonal complement $W$ for $V$ in $\mathbb{R}^4.$

2007 Romania National Olympiad, 1

Let $A,B\in\mathcal{M}_{2}(\mathbb{R})$ (real $2\times 2$ matrices), that satisfy $A^{2}+B^{2}=AB$. Prove that $(AB-BA)^{2}=O_{2}$.

KoMaL A Problems 2022/2023, A.837

Let all the edges of tetrahedron \(A_1A_2A_3A_4\) be tangent to sphere \(S\). Let \(\displaystyle a_i\) denote the length of the tangent from \(A_i\) to \(S\). Prove that \[\bigg(\sum_{i=1}^4 \frac 1{a_i}\bigg)^{\!\!2}> 2\bigg(\sum_{i=1}^4 \frac1{a_i^2}\bigg). \] [i]Submitted by Viktor Vígh, Szeged[/i]

1975 Spain Mathematical Olympiad, 3

We will designate by $Z_{(5)}$ a certain subset of the set $Q$ of the rational numbers . A rational belongs to $Z_{(5)}$ if and only if there exist equal fraction to this rational such that $5$ is not a divisor of its denominator. (For example, the rational number $13/10$ does not belong to $Z_{(5)}$ , since the denominator of all fractions equal to $13/10$ is a multiple of $5$. On the other hand, the rational $75/10$ belongs to $Z_{(5)}$ since that $75/10 = 15/12$). Reasonably answer the following questions: a) What algebraic structure (semigroup, group, etc.) does $Z_{(5)}$ have with respect to the sum? b) And regarding the product? c) Is $Z_{(5)}$ a subring of $Q$? d) Is $Z_{(5)}$ a vector space?

1973 IMO Shortlist, 12

Consider the two square matrices \[A=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &-1&-1 &+1& +1 \\ +1 & -1 & -1 & -1 & +1 \\ +1 &+1&-1 &+1&-1 \end{bmatrix} \quad \text{ and } \quad B=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &+1&-1& +1&-1 \\ +1 &-1& -1& +1& +1 \\ +1 & -1& +1&-1 &+1 \end{bmatrix}\] with entries $+1$ and $-1$. The following operations will be called elementary: (1) Changing signs of all numbers in one row; (2) Changing signs of all numbers in one column; (3) Interchanging two rows (two rows exchange their positions); (4) Interchanging two columns. Prove that the matrix $B$ cannot be obtained from the matrix $A$ using these operations.

2000 Italy TST, 2

Let $ ABC$ be an isosceles right triangle and $M$ be the midpoint of its hypotenuse $AB$. Points $D$ and $E$ are taken on the legs $AC$ and $BC$ respectively such that $AD=2DC$ and $BE=2EC$. Lines $AE$ and $DM$ intersect at $F$. Show that $FC$ bisects the $\angle DFE$.

2003 Iran MO (3rd Round), 15

Assume $m\times n$ matrix which is filled with just 0, 1 and any two row differ in at least $n/2$ members, show that $m \leq 2n$. ( for example the diffrence of this two row is only in one index 110 100) [i]Edited by Myth[/i]

2016 Harvard-MIT Mathematics Tournament, 9

For any positive integer $n$, $S_{n}$ be the set of all permutations of $\{1,2,3,\dots,n\}$. For each permutation $\pi \in S_n$, let $f(\pi)$ be the number of ordered pairs $(j,k)$ for which $\pi(j)>\pi(k)$ and $1\leq j<k \leq n$. Further define $g(\pi)$ to be the number of positive integers $k \leq n$ such that $\pi(k)\equiv k \pm 1 \pmod{n}$. Compute \[ \sum_{\pi \in S_{999}} (-1)^{f(\pi)+g(\pi)}. \]

2019 SEEMOUS, 3

Let $A,B$ be $n\times n$ matrices, $n\geq 2$, and $B^2=B$. Prove that: $$\text{rank}\,(AB-BA)\leq \text{rank}\,(AB+BA)$$

1977 IMO Shortlist, 15

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

1994 AIME Problems, 8

The points $(0,0),$ $(a,11)$, and $(b,37)$ are the vertices of an equilateral triangle. Find the value of $ab$.

2024 SEEMOUS, P2

Let $A,B\in\mathcal{M}_n(\mathbb{R})$ two real, symmetric matrices with nonnegative eigenvalues. Prove that $A^3+B^3=(A+B)^3$ if and only if $AB=O_n$.

1999 Miklós Schweitzer, 5

Let $\alpha>-2$ , $n\in \mathbb{N}$ and $y_1,\cdots,y_n$ be the solutions to the system of equations: $\sum_{j=1}^n \frac{y_j}{j+k+\alpha}= \frac{1}{n+1+k+\alpha}$ , $k=1,\cdots,n$ Prove that $y_{j-1}y_{j+1}\leq y_j^2 \,\forall 1<j<n$

2001 Tournament Of Towns, 4

There are two matrices $A$ and $B$ of size $m\times n$ each filled only by “0”s and “1”s. It is given that along any row or column its elements do not decrease (from left to right and from top to bottom).It is also given that the numbers of “1”s in both matrices are equal and for any $k = 1, . . .$ , $m$ the sum of the elements in the top $k$ rows of the matrix $A$ is no less than that of the matrix $B$. Prove for any $l = 1, . . . $, $n$ the sum of the elements in left $l$ columns of the matrix $A$ is no greater than that of the matrix $B$.

2014 IMC, 2

Let $A=(a_{ij})_{i, j=1}^n$ be a symmetric $n\times n$ matrix with real entries, and let $\lambda _1, \lambda _2, \dots, \lambda _n$ denote its eigenvalues. Show that $$\sum_{1\le i<j\le n} a_{ii}a_{jj}\ge \sum_{1\le i < j\le n} \lambda _i \lambda _j$$ and determine all matrices for which equality holds. (Proposed by Matrin Niepel, Comenius University, Bratislava)

2006 Moldova MO 11-12, 6

Sequences $(x_n)_{n\ge1}$, $(y_n)_{n\ge1}$ satisfy the relations $x_n=4x_{n-1}+3y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1}$ for $n\ge1$. If $x_1=y_1=5$ find $x_n$ and $y_n$. Calculate $\lim_{n\rightarrow\infty}\frac{x_n}{y_n}$.

2014 Taiwan TST Round 3, 1

Let $\mathbb R$ be the real numbers. Set $S = \{1, -1\}$ and define a function $\operatorname{sign} : \mathbb R \to S$ by \[ \operatorname{sign} (x) = \begin{cases} 1 & \text{if } x \ge 0; \\ -1 & \text{if } x < 0. \end{cases} \] Fix an odd integer $n$. Determine whether one can find $n^2+n$ real numbers $a_{ij}, b_i \in S$ (here $1 \le i, j \le n$) with the following property: Suppose we take any choice of $x_1, x_2, \dots, x_n \in S$ and consider the values \begin{align*} y_i &= \operatorname{sign} \left( \sum_{j=1}^n a_{ij} x_j \right), \quad \forall 1 \le i \le n; \\ z &= \operatorname{sign} \left( \sum_{i=1}^n y_i b_i \right) \end{align*} Then $z=x_1 x_2 \dots x_n$.

2022 VTRMC, 5

Let $A$ be an invertible $n \times n$ matrix with complex entries. Suppose that for each positive integer $m$, there exists a positive integer $k_m$ and an $n \times n$ invertible matrix $B_m$ such that $A^{k_m m} = B_m A B_m ^{-1}$. Show that all eigenvalues of $A$ are equal to $1$.

2017 Brazil Undergrad MO, 5

Let $d\leq n$ be positive integers and $A$ a real $d\times n$ matrix. Let $\sigma(A)$ be the supremum of $\inf_{v\in W,|v|=1}|Av|$ over all subspaces $W$ of $R^n$ with dimension $d$. For each $j \leq d$, let $r(j) \in \mathbb{R}^n$ be the $j$th row vector of $A$. Show that: \[\sigma(A) \leq \min_{i\leq d} d(r(i), \langle r(j), j\ne i\rangle) \leq \sqrt{n}\sigma(A)\] In which all are euclidian norms and $d(r(i), \langle r(j), j\ne i\rangle)$ denotes the distance between $r(i)$ and the span of $r(j), 1 \leq j \leq d, j\ne i$.

2014 Romania National Olympiad, 3

Let $A,B\in M_n(C)$ be two square matrices satisfying $A^2+B^2 = 2AB$. 1.Prove that $\det(AB-BA)=0$. 2.If $rank(A-B)=1$, then prove that $AB=BA$.

2005 Gheorghe Vranceanu, 1

Let be a natural number $ n\ge 2 $ and the $ n\times n $ matrix whose entries at the $ \text{i-th} $ line and $ \text{j-th} $ column is $ \min (i,j) . $ Calculate: [b]a)[/b] its determinant. [b]b)[/b] its inverse.