This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

2018 IMC, 6

Let $k$ be a positive integer. Find the smallest positive integer $n$ for which there exists $k$ nonzero vectors $v_1,v_2,…,v_k$ in $\mathbb{R}^n$ such that for every pair $i,j$ of indices with $|i-j|>1$ the vectors $v_i$ and $v_j$ are orthogonal. [i]Proposed by Alexey Balitskiy, Moscow Institute of Physics and Technology and M.I.T.[/i]

2016 District Olympiad, 2

Let A,B,C,D four matrices of order n with complex entries, n>=2 and let k real number such that AC+kBD=I and AD=BC. Prove that CA+kDB=I and DA=CB.

2024 Mexican University Math Olympiad, 2

Let \( A \) and \( B \) be two square matrices with complex entries such that \( A + B = AB \), \( A = A^* \), and \( A \) has all distinct eigenvalues. Prove that there exists a polynomial \( P \) with complex coefficients such that \( P(A) = B \).

MIPT student olimpiad spring 2023, 2

Let $A=a_{ij}$ is simetrical real matrix. Prove that : $\sum_i e^{a_{ii}} \leq tr (e^A)$

2001 Romania Team Selection Test, 3

Find the least $n\in N$ such that among any $n$ rays in space sharing a common origin there exist two which form an acute angle.

2004 Bulgaria Team Selection Test, 3

In any cell of an $n \times n$ table a number is written such that all the rows are distinct. Prove that we can remove a column such that the rows in the new table are still distinct.

2010 Contests, 4

Let $p$ be a positive integer, $p>1.$ Find the number of $m\times n$ matrices with entries in the set $\left\{ 1,2,\dots,p\right\} $ and such that the sum of elements on each row and each column is not divisible by $p.$

ICMC 4, 2

Let \(A\) be a square matrix with entries in the field \(\mathbb Z / p \mathbb Z\) such that \(A^n - I\) is invertible for every positive integer \(n\). Prove that there exists a positive integer \(m\) such that \(A^m = 0\). [i](A matrix having entries in the field \(\mathbb Z / p \mathbb Z\) means that two matrices are considered the same if each pair of corresponding entries differ by a multiple of \(p\).)[/i] [i]Proposed by Tony Wang[/i]

2006 VTRMC, Problem 3

Hey, This problem is from the VTRMC 2006. 3. Recall that the Fibonacci numbers $ F(n)$ are defined by $ F(0) \equal{} 0$, $ F(1) \equal{} 1$ and $ F(n) \equal{} F(n \minus{} 1) \plus{} F(n \minus{} 2)$ for $ n \geq 2$. Determine the last digit of $ F(2006)$ (e.g. the last digit of 2006 is 6). As, I and a friend were working on this we noticed an interesting relationship when writing the Fibonacci numbers in "mod" notation. Consider the following, 01 = 1 mod 10 01 = 1 mod 10 02 = 2 mod 10 03 = 3 mod 10 05 = 5 mod 10 08 = 6 mod 10 13 = 3 mod 10 21 = 1 mod 10 34 = 4 mod 10 55 = 5 mod 10 89 = 9 mod 10 Now, consider that between the first appearance and second apperance of $ 5 mod 10$, there is a difference of five terms. Following from this we see that the third appearance of $ 5 mod 10$ occurs at a difference 10 terms from the second appearance. Following this pattern we can create the following relationships. $ F(55) \equal{} F(05) \plus{} 5({2}^{2})$ This is pretty much as far as we got, any ideas?

1983 IMO Longlists, 17

In how many ways can $1, 2,\ldots, 2n$ be arranged in a $2 \times n$ rectangular array $\left(\begin{array}{cccc}a_1& a_2 & \cdots & a_n\\b_1& b_2 & \cdots & b_n\end{array}\right)$ for which: [b](i)[/b] $a_1 < a_2 < \cdots < a_n,$ [b](ii) [/b] $b_1 < b_2 <\cdots < b_n,$ [b](iii) [/b]$a_1 < b_1, a_2 < b_2, \ldots, a_n < b_n \ ?$

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a number $ t\in (0,1) $ and $ n+1 $ numbers $ a_0\ge a_1\ge a_2\ge\cdots\ge a_n\ge 0. $ Prove the following matrix inequality: $$ \begin{vmatrix}\frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0& 0 & \cdots & 0 & 0 \\ 0 & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 \\ a_0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}^2\le a_0^2\left( 1+\frac{1}{t^2} \right) $$

1991 Arnold's Trivium, 87

Find the derivatives of the lengths of the semiaxes of the ellipsoid $x^2 + y^2 + z^2 + xy + yz + zx = 1 + \epsilon xy$ with respect to $\epsilon$ at $\epsilon = 0$.

1983 Iran MO (2nd round), 3

Find a matrix $A_{(2 \times 2)}$ for which \[ \begin{bmatrix}2 &1 \\ 3 & 2\end{bmatrix} A \begin{bmatrix}3 & 2 \\ 4 & 3\end{bmatrix} = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}.\]

2016 VJIMC, 3

For $n \geq 3$ find the eigenvalues (with their multiplicities) of the $n \times n$ matrix $$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & \dots & \dots & 0 & 0\\ 0 & 2 & 0 & 1 & 0 & 0 & \dots & \dots & 0 & 0\\ 1 & 0 & 2 & 0 & 1 & 0 & \dots & \dots & 0 & 0\\ 0 & 1 & 0 & 2 & 0 & 1 & \dots & \dots & 0 & 0\\ 0 & 0 & 1 & 0 & 2 & 0 & \dots & \dots & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 2 & \dots & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & \dots & 2 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & \dots & 0 & 1 \end{bmatrix}$$

2012 Gheorghe Vranceanu, 1

[b]a)[/b] Find all $ 2\times 2 $ complex matrices $ A $ which have the property that there are two complex numbers $ \alpha ,\gamma $ with $ \alpha \neq \text{tr} (A) $ or $ \gamma\neq \det (A) $ such that $ A^2-\alpha A+\gamma I=0. $ [b]b)[/b] Consider $ B\not\in\{ 0,I\} $ as a matrix having the property mentioned at [b]a).[/b] Solve in the complex numbers the system $ xB-yI-B^2=xB^2-yI-B^4=0. $ [i]Adrian Troie[/i]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 1

Suppose $A\in{M_2(\mathbb{C})}$ is not a scalar matrix. Let $S=\{B\in{M_2(\mathbb{C})}|\ AB=BA\}$. If $X,\ Y\in{S}$, then prove that $XY=YX$.

2013 Online Math Open Problems, 14

In the universe of Pi Zone, points are labeled with $2 \times 2$ arrays of positive reals. One can teleport from point $M$ to point $M'$ if $M$ can be obtained from $M'$ by multiplying either a row or column by some positive real. For example, one can teleport from $\left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right)$ to $\left( \begin{array}{cc} 1 & 20 \\ 3 & 40 \end{array} \right)$ and then to $\left( \begin{array}{cc} 1 & 20 \\ 6 & 80 \end{array} \right)$. A [i]tourist attraction[/i] is a point where each of the entries of the associated array is either $1$, $2$, $4$, $8$ or $16$. A company wishes to build a hotel on each of several points so that at least one hotel is accessible from every tourist attraction by teleporting, possibly multiple times. What is the minimum number of hotels necessary? [i]Proposed by Michael Kural[/i]

2001 SNSB Admission, 6

There are $ n\ge 1 $ ordered bulbs controlled by $ n $ ordered switches such that the $ k\text{-th} $ switch controls the $ k\text{-th} $ bulb and also the $ j\text{-th} $ bulb if and only if the $ j\text{-th} $ switch controls the $ k\text{-th} $ bulb, for any $ 1\le k,j\le n. $ If all bulbs are off, show that it can be chosen some switches such that, if pushed simmultaneously, the bulbs turn all on.

2001 Tournament Of Towns, 4

There are two matrices $A$ and $B$ of size $m\times n$ each filled only by “0”s and “1”s. It is given that along any row or column its elements do not decrease (from left to right and from top to bottom).It is also given that the numbers of “1”s in both matrices are equal and for any $k = 1, . . .$ , $m$ the sum of the elements in the top $k$ rows of the matrix $A$ is no less than that of the matrix $B$. Prove for any $l = 1, . . . $, $n$ the sum of the elements in left $l$ columns of the matrix $A$ is no greater than that of the matrix $B$.

2009 AIME Problems, 10

The Annual Interplanetary Mathematics Examination (AIME) is written by a committee of five Martians, five Venusians, and five Earthlings. At meetings, committee members sit at a round table with chairs numbered from $ 1$ to $ 15$ in clockwise order. Committee rules state that a Martian must occupy chair $ 1$ and an Earthling must occupy chair $ 15$. Furthermore, no Earthling can sit immediately to the left of a Martian, no Martian can sit immediately to the left of a Venusian, and no Venusian can sit immediately to the left of an Earthling. The number of possible seating arrangements for the committee is $ N\cdot (5!)^3$. Find $ N$.

2014 Online Math Open Problems, 15

In Prime Land, there are seven major cities, labelled $C_0$, $C_1$, \dots, $C_6$. For convenience, we let $C_{n+7} = C_n$ for each $n=0,1,\dots,6$; i.e. we take the indices modulo $7$. Al initially starts at city $C_0$. Each minute for ten minutes, Al flips a fair coin. If the coin land heads, and he is at city $C_k$, he moves to city $C_{2k}$; otherwise he moves to city $C_{2k+1}$. If the probability that Al is back at city $C_0$ after $10$ moves is $\tfrac{m}{1024}$, find $m$. [i]Proposed by Ray Li[/i]

2017 Korea USCM, 6

Given a positive integer $n$ and a real valued $n\times n$ matrix $A$. $J$ is $n\times n$ matrix with every entry $1$. Suppose $A$ satisfies the following relations. $$A+A^T = \frac{1}{n} J, \quad AJ = \frac{1}{2} J$$ Show that $A^m-I$ is an invertible matrix for all positive odd integer $m$.

1996 Putnam, 4

For any square matrix $\mathcal{A}$ we define $\sin {\mathcal{A}}$ by the usual power series. \[ \sin {\mathcal{A}}=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\mathcal{A}^{2n+1} \] Prove or disprove : $\exists 2\times 2$ matrix $A\in \mathcal{M}_2(\mathbb{R})$ such that \[ \sin{A}=\left(\begin{array}{cc}1 & 1996 \\0 & 1 \end{array}\right) \]

2017 Brazil Undergrad MO, 5

Let $d\leq n$ be positive integers and $A$ a real $d\times n$ matrix. Let $\sigma(A)$ be the supremum of $\inf_{v\in W,|v|=1}|Av|$ over all subspaces $W$ of $R^n$ with dimension $d$. For each $j \leq d$, let $r(j) \in \mathbb{R}^n$ be the $j$th row vector of $A$. Show that: \[\sigma(A) \leq \min_{i\leq d} d(r(i), \langle r(j), j\ne i\rangle) \leq \sqrt{n}\sigma(A)\] In which all are euclidian norms and $d(r(i), \langle r(j), j\ne i\rangle)$ denotes the distance between $r(i)$ and the span of $r(j), 1 \leq j \leq d, j\ne i$.

2012 Miklós Schweitzer, 2

Call a subset $A$ of the cyclic group $(\mathbb{Z}_n,+)$ [i]rich[/i] if for all $x,y \in \mathbb{Z}_n$ there exists $r \in \mathbb{Z}_n$ such that $x-r,x+r,y-r,y+r$ are all in $A$. For what $\alpha$ is there a constant $C_\alpha>0$ such that for each odd positive integer $n$, every rich subset $A \subset \mathbb{Z}_n$ has at least $C_\alpha n^\alpha$ elements?