This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

2024 Romania National Olympiad, 3

Let $A,B \in \mathcal{M}_n(\mathbb{R}).$ We consider the function $f:\mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}),$ defined by $f(Z)=AZ+B\overline{Z},$ $Z \in \mathcal{M}_n(\mathbb{C}),$ where $\overline{Z}$ is the matrix whose entries are the conjugates of the corresponding entries of $Z.$ Prove that the following statements are equivalent: $(1)$ the function $f$ is injective; $(2)$ the function $f$ is surjective; $(3)$ the matrices $A+B$ and $A-B$ are invertible.

2020 Simon Marais Mathematics Competition, A4

A [i]regular spatial pentagon[/i] consists of five points $P_1,P_2,P_3,P_4$ and $P_5$ in $\mathbb{R}^3$ such that $|P_iP_{i+1}|=|P_jP_{j+1}|$ and $\angle P_{i-1}P_iP_{i+1}=\angle P_{j-1}P_jP_{j+1}$ for all $1\leq i,\leq 5$, where $P_0=P_5$ and $P_{6}=P_{1}$. A regular spatial pentagon is [i]planar[/i] if there is a plane passing through all five points $P_1,P_2,P_3,P_4$ and $P_5$. Show that every regular spatial pentagon is planar.

2000 District Olympiad (Hunedoara), 1

Solve in the set of $ 2\times 2 $ integer matrices the equation $$ X^2-4\cdot X+4\cdot\left(\begin{matrix}1\quad 0\\0\quad 1\end{matrix}\right) =\left(\begin{matrix}7\quad 8\\12\quad 31\end{matrix}\right) . $$

2017 Romania National Olympiad, 2

Let be two natural numbers $ n\ge 2, k, $ and $ k\quad n\times n $ symmetric real matrices $ A_1,A_2,\ldots ,A_k. $ Then, the following relations are equivalent: $ 1)\quad \left| \sum_{i=1}^k A_i^2 \right| =0 $ $ 2)\quad \left| \sum_{i=1}^k A_iB_i \right| =0,\quad\forall B_1,B_2,\ldots ,B_k\in \mathcal{M}_n\left( \mathbb{R} \right) $ $ || $ [i]denotes the determinant.[/i]

2001 SNSB Admission, 1

Show that $ \det \left( I_n+A \right)\ge 1, $ for any $ n\times n $ antisymmetric real matrix $ A. $

2019 Jozsef Wildt International Math Competition, W. 44

We consider a natural number $n$, $n \geq 2$ and the matrices \begin{tabular}{cc} $A= \begin{pmatrix} 1 & 2 & 3 & \cdots & n\\ n & 1 & 2 & \cdots & n - 1\\ n - 1 & n & 1 & \cdots & n - 2\\ \cdots & \cdots & \cdots & \cdots & \cdots\\2 & 3 & 4 & \cdots & 1 \end{pmatrix}$ \end{tabular} Show that$$\epsilon^ndet\left(I_n-A^{2n}\right)+\epsilon^{n-1}det\left(\epsilon I_n-A^{2n}\right)+\epsilon^{n-2}det\left(\epsilon^2 I_n-A^{2n}\right)+\cdots +det\left(\epsilon^n I_n-A^{2n}\right)$$ $$=n(-1)^{n-1}\left[\frac{n^n(n+1)}{2}\right]^{2n^2-4n}\left(1+(n+1)^{2n}\left(2n+(-1)^n{{2n}\choose{n}}\right)\right)$$where $\epsilon \in \mathbb{C}\backslash \mathbb{R}$, $\epsilon^{n+1}=1$

2010 National Olympiad First Round, 2

How many ordered pairs of positive integers $(x,y)$ are there such that $y^2-x^2=2y+7x+4$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ 0 \qquad\textbf{(E)}\ \text{Infinitely many} $

1973 Spain Mathematical Olympiad, 5

Consider the set of all polynomials of degree less than or equal to $4$ with rational coefficients. a) Prove that it has a vector space structure over the field of numbers rational. b) Prove that the polynomials $1, x - 2, (x -2)^2, (x - 2)^3$ and $(x -2)^4$ form a base of this space. c) Express the polynomial $7 + 2x - 45x^2 + 3x^4$ in the previous base.

2019 Teodor Topan, 4

Calculate the minimum value of $ \text{tr} (A^tA) , $ where $ A $ in the cases where is a matrix of pairwise distinct nonnegative integers and: [b]a)[/b] $ \det A\equiv 1\pmod 2 $ [b]b)[/b] $ \det A=0 $ [i]Vlad Mihaly[/i]

1983 Iran MO (2nd round), 3

Find a matrix $A_{(2 \times 2)}$ for which \[ \begin{bmatrix}2 &1 \\ 3 & 2\end{bmatrix} A \begin{bmatrix}3 & 2 \\ 4 & 3\end{bmatrix} = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}.\]

2005 Brazil Undergrad MO, 6

Prove that for any natural numbers $0 \leq i_1 < i_2 < \cdots < i_k$ and $0 \leq j_1 < j_2 < \cdots < j_k$, the matrix $A = (a_{rs})_{1\leq r,s\leq k}$, $a_{rs} = {i_r + j_s\choose i_r} = {(i_r + j_s)!\over i_r!\, j_s!}$ ($1\leq r,s\leq k$) is nonsingular.

1991 Spain Mathematical Olympiad, 2

Given two distinct elements $a,b \in \{-1,0,1\}$, consider the matrix $A$ . Find a subset $S$ of the set of the rows of $A$, of minimum size, such that every other row of $A$ is a linear combination of the rows in $S$ with integer coefficients.

2004 Nicolae Coculescu, 3

Solve in $ \mathcal{M}_2(\mathbb{R}) $ the equation $ X^3+X+2I=0. $ [i]Florian Dumitrel[/i]

2022 IMC, 5

We colour all the sides and diagonals of a regular polygon $P$ with $43$ vertices either red or blue in such a way that every vertex is an endpoint of $20$ red segments and $22$ blue segments. A triangle formed by vertices of $P$ is called monochromatic if all of its sides have the same colour. Suppose that there are $2022$ blue monochromatic triangles. How many red monochromatic triangles are there?

2003 IMC, 1

Let $A,B \in \mathbb{R}^{n\times n}$ such that $AB+B+A=0$. Prove that $AB=BA$.

1997 AMC 12/AHSME, 21

For any positive integer $ n$, let \[f(n) \equal{} \begin{cases} \log_8{n}, & \text{if }\log_8{n}\text{ is rational,} \\ 0, & \text{otherwise.} \end{cases}\] What is $ \sum_{n \equal{} 1}^{1997}{f(n)}$? $ \textbf{(A)}\ \log_8{2047}\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ \frac {55}{3}\qquad \textbf{(D)}\ \frac {58}{3}\qquad \textbf{(E)}\ 585$

2014 NIMO Problems, 6

We know $\mathbb Z_{210} \cong \mathbb Z_2 \times \mathbb Z_3 \times \mathbb Z_5 \times \mathbb Z_7$. Moreover,\begin{align*} 53 & \equiv 1 \pmod{2} \\ 53 & \equiv 2 \pmod{3} \\ 53 & \equiv 3 \pmod{5} \\ 53 & \equiv 4 \pmod{7}. \end{align*} Let \[ M = \left( \begin{array}{ccc} 53 & 158 & 53 \\ 23 & 93 & 53 \\ 50 & 170 & 53 \end{array} \right). \] Based on the above, find $\overline{(M \mod{2})(M \mod{3})(M \mod{5})(M \mod{7})}$.

2014 Cezar Ivănescu, 3

Let $ A,B,C,D $ be four $ 2\times 2 $ complex matrices such that $ A-D $ is invertible and such that $$ A^2+BA+C=0=D^2+BD+C. $$ Prove that $ \text{tr} (A+D) =-\text{tr} B $ and $ \det (AD) =\det C. $

2005 iTest, 20

If $A$ is the $3\times 3$ square matrix $\begin{bmatrix} 5 & 3 & 8\\ 2 & 2 & 5\\ 3 & 5 & 1 \end{bmatrix}$ and $B$ is the $4\times 4$ square matrix $\begin{bmatrix} 32 & 2 & 4 & 3 \\ 3 & 4 & 8 & 3 \\ 11 & 3 & 6 & 1 \\ 5 & 5 & 10 & 1 \end{bmatrix} $ find the sum of the determinants of $A$ and $B$.

2007 IMC, 4

Let $ n > 1$ be an odd positive integer and $ A = (a_{ij})_{i, j = 1..n}$ be the $ n \times n$ matrix with \[ a_{ij}= \begin{cases}2 & \text{if }i = j \\ 1 & \text{if }i-j \equiv \pm 2 \pmod n \\ 0 & \text{otherwise}\end{cases}.\] Find $ \det A$.

2011 Bogdan Stan, 1

Let be the matrix $ A=\begin{pmatrix} 1& 2& -1\\ 2&2 &0\\1& 4& -3 \end{pmatrix} . $ [b]a)[/b] Show that the equation $ AX=\begin{pmatrix} 2\\ 1\\5 \end{pmatrix} $ has infinite solutions in $ \mathcal{M}_1^3\left( \mathbb{C} \right) . $ [b]b)[/b] Find the rank of the adugate of $ A. $

2008 Harvard-MIT Mathematics Tournament, 9

A Sudoku matrix is defined as a $ 9\times9$ array with entries from $ \{1, 2, \ldots , 9\}$ and with the constraint that each row, each column, and each of the nine $ 3 \times 3$ boxes that tile the array contains each digit from $ 1$ to $ 9$ exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal probability of being chosen). We know two of the squares in this matrix, as shown. What is the probability that the square marked by ? contains the digit $ 3$? $ \setlength{\unitlength}{6mm} \begin{picture}(9,9)(0,0) \multiput(0,0)(1,0){10}{\line(0,1){9}} \multiput(0,0)(0,1){10}{\line(1,0){9}} \linethickness{1.2pt} \multiput(0,0)(3,0){4}{\line(0,1){9}} \multiput(0,0)(0,3){4}{\line(1,0){9}} \put(0,8){\makebox(1,1){1}} \put(1,7){\makebox(1,1){2}} \put(3,6){\makebox(1,1){?}} \end{picture}$

2011 AIME Problems, 11

Let $M_n$ be the $n\times n$ matrix with entries as follows: for $1\leq i \leq n$, $m_{i,i}=10$; for $1\leq i \leq n-1, m_{i+1,i}=m_{i,i+1}=3$; all other entries in $M_n$ are zero. Let $D_n$ be the determinant of matrix $M_n$. Then $\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{8D_n+1}$ can be represented as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. Note: The determinant of the $1\times 1$ matrix $[a]$ is $a$, and the determinant of the $2\times 2$ matrix $\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right]=ad-bc$; for $n\geq 2$, the determinant of an $n\times n$ matrix with first row or first column $a_1\ a_2\ a_3 \dots\ a_n$ is equal to $a_1C_1 - a_2C_2 + a_3C_3 - \dots + (-1)^{n+1} a_nC_n$, where $C_i$ is the determinant of the $(n-1)\times (n-1)$ matrix found by eliminating the row and column containing $a_i$.

1995 IMC, 5

Let $A$ and $B$ be real $n\times n $ matrices. Assume there exist $n+1$ different real numbers $t_{1},t_{2},\dots,t_{n+1}$ such that the matrices $$C_{i}=A+t_{i}B, \,\, i=1,2,\dots,n+1$$ are nilpotent. Show that both $A$ and $B$ are nilpotent.

2009 IberoAmerican Olympiad For University Students, 2

Let $x_1,\cdots, x_n$ be nonzero vectors of a vector space $V$ and $\varphi:V\to V$ be a linear transformation such that $\varphi x_1 = x_1$, $\varphi x_k = x_k - x_{k-1}$ for $k = 2, 3,\ldots,n$. Prove that the vectors $x_1,\ldots,x_n$ are linearly independent.