This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2010 Today's Calculation Of Integral, 610

Evaluate $\int_2^a \frac{x^a-1-xa^x\ln a}{(x^a-1)^2}dx.$ proposed by kunny

2013 ELMO Shortlist, 9

Let $a, b, c$ be positive reals, and let $\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P$. Prove that \[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\][i]Proposed by David Stoner[/i]

2013 ISI Entrance Examination, 1

Tags: logarithm
Let $a,b,c$ be real number greater than $1$. Let \[S=\log_a {bc}+\log_b {ca}+\log_c {ab}\] Find the minimum possible value of $S$.

2005 Today's Calculation Of Integral, 33

Evaluate \[\int_{-\ln 2}^0\ \frac{dx}{\cos ^2 h x \cdot \sqrt{1-2a\tanh x +a^2}}\ (a>0)\]

2015 Swedish Mathematical Competition, 4

Solve the system of equations $$ \left\{\begin{array}{l} x \log x+y \log y+z \log x=0\\ \\ \dfrac{\log x}{x}+\dfrac{\log y}{y}+\dfrac{\log z}{z}=0 \end{array} \right. $$

1997 IMC, 1

Let $\{\epsilon_n\}^\infty_{n=1}$ be a sequence of positive reals with $\lim\limits_{n\rightarrow+\infty}\epsilon_n = 0$. Find \[ \lim\limits_{n\rightarrow\infty}\dfrac{1}{n}\sum\limits^{n}_{k=1}\ln\left(\dfrac{k}{n}+\epsilon_n\right) \]

2020 IMC, 8

Compute $\lim\limits_{n \to \infty} \frac{1}{\log \log n} \sum\limits_{k=1}^n (-1)^k \binom{n}{k} \log k.$

1991 AMC 12/AHSME, 20

The sum of all real $x$ such that $(2^{x} - 4)^{3} + (4^{x} - 2)^{3} = (4^{x} + 2^{x} - 6)^{3}$ is $ \textbf{(A)}\ 3/2\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 5/2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 7/2 $

2021 AMC 12/AHSME Fall, 9

Tags: logarithm
A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_2 x$, $\log_3 x$, and $\log_4 x$. What is $x$? $\textbf{(A) }2\sqrt{6}\qquad\textbf{(B) }6\sqrt{6}\qquad\textbf{(C) }24\qquad\textbf{(D) }48\qquad\textbf{(E) }576$

2014 AMC 12/AHSME, 20

For how many positive integers $x$ is $\log_{10}{(x-40)} + \log_{10}{(60-x)} < 2$? ${ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}}\ 20\qquad\textbf{(E)}\ \text{infinitely many} $

2014 Saudi Arabia IMO TST, 2

Determine all functions $f:[0,\infty)\rightarrow\mathbb{R}$ such that $f(0)=0$ and \[f(x)=1+5f\left(\left\lfloor{\frac{x}{2}\right\rfloor}\right)-6f\left(\left\lfloor{\frac{x}{4}\right\rfloor}\right)\] for all $x>0$.

2008 Mediterranean Mathematics Olympiad, 4

The sequence of polynomials $(a_n)$ is defined by $a_0=0$, $ a_1=x+2$ and $a_n=a_{n-1}+3a_{n-1}a_{n-2} +a_{n-2}$ for $n>1$. (a) Show for all positive integers $k,m$: if $k$ divides $m$ then $a_k$ divides $a_m$. (b) Find all positive integers $n$ such that the sum of the roots of polynomial $a_n$ is an integer.

2010 All-Russian Olympiad, 3

Given $n \geq 3$ pairwise different prime numbers $p_1, p_2, ....,p_n$. Given, that for any $k \in \{ 1,2,....,n \}$ residue by division of $ \prod_{i \neq k} p_i$ by $p_k$ equals one number $r$. Prove, that $r \leq n-2 $.

2014 Harvard-MIT Mathematics Tournament, 3

Tags: logarithm , hmmt
Let \[ A = \frac{1}{6}((\log_2(3))^3-(\log_2(6))^3-(\log_2(12))^3+(\log_2(24))^3) \]. Compute $2^A$.

2012 Today's Calculation Of Integral, 812

Let $f(x)=\frac{\cos 2x-(a+2)\cos x+a+1}{\sin x}.$ For constant $a$ such that $\lim_{x\rightarrow 0} \frac{f(x)}{x}=\frac 12$, evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)}dx.$

1972 Swedish Mathematical Competition, 4

Put $x = \log_{10} 2$, $y = \log_{10} 3$. Then $15 < 16$ implies $1 - x + y < 4x$, so $1 + y < 5x$. Derive similar inequalities from $80 < 81$ and $243 < 250$. Hence show that \[ 0.47 < \log_{10} 3 < 0.482. \]

2012 Today's Calculation Of Integral, 835

Evaluate the following definite integrals. (a) $\int_1^2 \frac{x-1}{x^2-2x+2}\ dx$ (b) $\int_0^1 \frac{e^{4x}}{e^{2x}+2}\ dx$ (c) $\int_1^e x\ln \sqrt{x}\ dx$ (d) $\int_0^{\frac{\pi}{3}} \left(\cos ^ 2 x\sin 3x-\frac 14\sin 5x\right)\ dx$

IV Soros Olympiad 1997 - 98 (Russia), 11.5

Find all integers $n$ for which $\log_{2n-2} (n^2 + 2)$ is a rational number.

2004 Harvard-MIT Mathematics Tournament, 9

Find the positive constant $c_0$ such that the series \[ \displaystyle\sum_{n = 0}^{\infty} \dfrac {n!}{(cn)^n} \] converges for $c>c_0$ and diverges for $0<c<c_0$.

2010 Today's Calculation Of Integral, 585

Evaluate $ \int_0^{\ln 2} (x\minus{}\ln 2)e^{\minus{}2\ln (1\plus{}e^x)\plus{}x\plus{}\ln 2}dx$.

2011 District Olympiad, 4

[b]a)[/b] Show that , if $ a,b>1 $ are two distinct real numbers, then $ \log_a\log_a b >\log_b\log_a b. $ [b]b)[/b] Show that if $ a_1>a_2>\cdots >a_n>1 $ are $ n\ge 2 $ real numbers, then $$ \log_{a_1}\log_{a_1} a_2 +\log_{a_2}\log_{a_2} a_3 +\cdots +\log_{a_{n-1}}\log_{a_{n-1}} a_n +\log_{a_n}\log_{a_n} a_1 >0. $$

2008 Harvard-MIT Mathematics Tournament, 3

([b]4[/b]) Find all $ y > 1$ satisfying $ \int^y_1x\ln x\ dx \equal{} \frac {1}{4}$.

PEN A Problems, 25

Show that ${2n \choose n} \; \vert \; \text{lcm}(1,2, \cdots, 2n)$ for all positive integers $n$.

2009 Today's Calculation Of Integral, 441

Evaluate $ \int_1^e \frac{(x^2\ln x\minus{}1)e^x}{x}\ dx.$

2007 Romania National Olympiad, 1

Let $\mathcal{F}$ be the set of functions $f: [0,1]\to\mathbb{R}$ that are differentiable, with continuous derivative, and $f(0)=0$, $f(1)=1$. Find the minimum of $\int_{0}^{1}\sqrt{1+x^{2}}\cdot \big(f'(x)\big)^{2}\ dx$ (where $f\in\mathcal{F}$) and find all functions $f\in\mathcal{F}$ for which this minimum is attained. [hide="Comment"] In the contest, this was the b) point of the problem. The a) point was simply ``Prove the Cauchy inequality in integral form''. [/hide]