This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1960 AMC 12/AHSME, 24

If $\log_{2x}216 = x$, where $x$ is real, then $x$ is: $ \textbf{(A)}\ \text{A non-square, non-cube integer} \qquad$ $\textbf{(B)}\ \text{A non-square, non-cube, non-integral rational number} \qquad$ $\textbf{(C)}\ \text{An irrational number} \qquad$ $\textbf{(D)}\ \text{A perfect square}\qquad$ $\textbf{(E)}\ \text{A perfect cube} $

2007 Purple Comet Problems, 12

Tags: logarithm
Find the maximum possible value of $8\cdot 27^{\log_6 x}+27\cdot 8^{\log_6 x}-x^3$ as $x$ varies over the positive real numbers.

1967 AMC 12/AHSME, 23

Tags: logarithm , limit
If $x$ is real and positive and grows beyond all bounds, then $\log_3{(6x-5)}-\log_3{(2x+1)}$ approaches: $\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ \text{no finite number}$

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2010 Romania National Olympiad, 4

Let $a\in \mathbb{R}_+$ and define the sequence of real numbers $(x_n)_n$ by $x_1=a$ and $x_{n+1}=\left|x_n-\frac{1}{n}\right|,\ n\ge 1$. Prove that the sequence is convergent and find it's limit.

2005 AMC 12/AHSME, 21

Tags: logarithm
How many ordered triples of integers $ (a,b,c)$, with $ a \ge 2$, $ b\ge 1$, and $ c \ge 0$, satisfy both $ \log_a b \equal{} c^{2005}$ and $ a \plus{} b \plus{} c \equal{} 2005$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

2010 Today's Calculation Of Integral, 523

Prove the following inequality. \[ \ln \frac {\sqrt {2009} \plus{} \sqrt {2010}}{\sqrt {2008} \plus{} \sqrt {2009}} < \int_{\sqrt {2008}}^{\sqrt {2009}} \frac {\sqrt {1 \minus{} e^{ \minus{} x^2}}}{x}\ dx < \sqrt {2009} \minus{} \sqrt {2008}\]

2021 JHMT HS, 9

Tags: algebra , logarithm
Let $a$ and $b$ be positive real numbers such that $\log_{43}{a} = \log_{47} (3a + 4b) = \log_{2021}b^2$. Then, the value of $\tfrac{b^2}{a^2}$ can be written as $m + \sqrt{n}$, where $m$ and $n$ are integers. Find $m + n$.

2001 Junior Balkan Team Selection Tests - Romania, 1

Let $ABCD$ be a rectangle. We consider the points $E\in CA,F\in AB,G\in BC$ such that $DC\perp CA,EF\perp AB$ and $EG\perp BC$. Solve in the set of rational numbers the equation $AC^x=EF^x+EG^x$.

2010 Today's Calculation Of Integral, 646

Evaluate \[\int_0^{\pi} a^x\cos bx\ dx,\ \int_0^{\pi} a^x\sin bx\ dx\ (a>0,\ a\neq 1,\ b\in{\mathbb{N^{+}}})\] Own

2019 AMC 12/AHSME, 12

Positive real numbers $x \neq 1$ and $y \neq 1$ satisfy $\log_2{x} = \log_y{16}$ and $xy = 64$. What is $(\log_2{\tfrac{x}{y}})^2$? $\textbf{(A) } \frac{25}{2} \qquad\textbf{(B) } 20 \qquad\textbf{(C) } \frac{45}{2} \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 32$

PEN E Problems, 24

Let $p_{n}$ again denote the $n$th prime number. Show that the infinite series \[\sum^{\infty}_{n=1}\frac{1}{p_{n}}\] diverges.

2012 Today's Calculation Of Integral, 830

Find $\lim_{n\to\infty} \frac{1}{(\ln n)^2}\sum_{k=3}^n \frac{\ln k}{k}.$

2007 Tuymaada Olympiad, 4

Prove that there exists a positive $ c$ such that for every positive integer $ N$ among any $ N$ positive integers not exceeding $ 2N$ there are two numbers whose greatest common divisor is greater than $ cN$.

2015 China National Olympiad, 1

Determine all integers $k$ such that there exists infinitely many positive integers $n$ [b]not[/b] satisfying \[n+k |\binom{2n}{n}\]

2005 Today's Calculation Of Integral, 19

Calculate the following indefinite integrals. [1] $\int \tan ^ 3 x dx$ [2] $\int a^{mx+n}dx\ (a>0,a\neq 1, mn\neq 0)$ [3] $\int \cos ^ 5 x dx$ [4] $\int \sin ^ 2 x\cos ^ 3 x dx$ [5]$ \int \frac{dx}{\sin x}$

2010 Today's Calculation Of Integral, 621

Find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^n k\ln \left(\frac{n^2+(k-1)^2}{n^2+k^2}\right).$ [i]2010 Yokohama National University entrance exam/Engineering, 2nd exam[/i]

2025 VJIMC, 3

Evaluate the integral $\int_0^{\infty} \frac{\log(x+2)}{x^2+3x+2}\mathrm{d}x$.

1983 IMO Longlists, 32

Let $a, b, c$ be positive real numbers and let $[x]$ denote the greatest integer that does not exceed the real number $x$. Suppose that $f$ is a function defined on the set of non-negative integers $n$ and taking real values such that $f(0) = 0$ and \[f(n) \leq an + f([bn]) + f([cn]), \qquad \text{ for all } n \geq 1.\] Prove that if $b + c < 1$, there is a real number $k$ such that \[f(n) \leq kn \qquad \text{ for all } n \qquad (1)\] while if $b + c = 1$, there is a real number $K$ such that $f(n) \leq K n \log_2 n$ for all $n \geq 2$. Show that if $b + c = 1$, there may not be a real number $k$ that satisfies $(1).$

2006 Iran Team Selection Test, 2

Let $n$ be a fixed natural number. [b]a)[/b] Find all solutions to the following equation : \[ \sum_{k=1}^n [\frac x{2^k}]=x-1 \] [b]b)[/b] Find the number of solutions to the following equation ($m$ is a fixed natural) : \[ \sum_{k=1}^n [\frac x{2^k}]=x-m \]

2022 VTRMC, 4

Calculate the exact value of the series $\sum _{n=2} ^\infty \log (n^3 +1) - \log (n^3 - 1)$ and provide justification.

2009 Today's Calculation Of Integral, 516

Let $ f(x)\equal{}\frac{1}{\sin x\sqrt{1\minus{}\cos x}}\ (0<x<\pi)$. (1) Find the local minimum value of $ f(x)$. (2) Evaluate $ \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} f(x)\ dx$.

1969 German National Olympiad, 4

Solve the system of equations: $$|\log_2(x + y)| + | \log_2(x - y)| = 3$$ $$xy = 3$$

2012 Online Math Open Problems, 26

Find the smallest positive integer $k$ such that \[\binom{x+kb}{12} \equiv \binom{x}{12} \pmod{b}\] for all positive integers $b$ and $x$. ([i]Note:[/i] For integers $a,b,c$ we say $a \equiv b \pmod c$ if and only if $a-b$ is divisible by $c$.) [i]Alex Zhu.[/i] [hide="Clarifications"][list=1][*]${{y}\choose{12}} = \frac{y(y-1)\cdots(y-11)}{12!}$ for all integers $y$. In particular, ${{y}\choose{12}} = 0$ for $y=1,2,\ldots,11$.[/list][/hide]

2018 District Olympiad, 3

Let $a, b, c$ be strictly positive real numbers such that $1 < b \le c^2 \le a^{10}$, and \[\log_ab + 2\log_bc + 5\log_ca = 12.\] Prove that \[2\log_ac + 5\log_cb + 10\log_ba \ge 21.\]