This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

1953 AMC 12/AHSME, 21

Tags: logarithm
If $ \log_{10} (x^2\minus{}3x\plus{}6)\equal{}1$, the value of $ x$ is: $ \textbf{(A)}\ 10\text{ or }2 \qquad\textbf{(B)}\ 4\text{ or }\minus{}2 \qquad\textbf{(C)}\ 3\text{ or }\minus{}1 \qquad\textbf{(D)}\ 4\text{ or }\minus{}1\\ \textbf{(E)}\ \text{none of these}$

2022 District Olympiad, P1

Tags: algebra , logarithm
Determine all $x\in(0,3/4)$ which satisfy \[\log_x(1-x)+\log_2\frac{1-x}{x}=\frac{1}{(\log_2x)^2}.\]

PEN P Problems, 12

The positive function $p(n)$ is defined as the number of ways that the positive integer $n$ can be written as a sum of positive integers. Show that, for all positive integers $n \ge 2$, \[2^{\lfloor \sqrt{n}\rfloor}< p(n) < n^{3 \lfloor\sqrt{n}\rfloor }.\]

2004 Romania National Olympiad, 3

Let $n>2,n \in \mathbb{N}$ and $a>0,a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that: \[ 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} . \] [i]Radu Gologan[/i]

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

2011 Today's Calculation Of Integral, 757

Evaluate \[\int_0^1 \frac{(x^2+x+1)^3\{\ln (x^2+x+1)+2\}}{(x^2+x+1)^3}(2x+1)e^{x^2+x+1}dx.\]

2014 ELMO Shortlist, 9

Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \][i]Proposed by Shashwat Kishore[/i]

2013 Today's Calculation Of Integral, 885

Find the infinite integrals as follows. (1) 2013 Hiroshima City University entrance exam/Informatic Science $\int \frac{x^2}{2-x^2}dx$ (2) 2013 Kanseigakuin University entrance exam/Science and Technology $\int x^4\ln x\ dx$ (3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam $\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx$

2006 Harvard-MIT Mathematics Tournament, 8

Compute $\displaystyle\int_0^{\pi/3}x\tan^2(x)dx$.

2011 Math Prize For Girls Problems, 12

If $x$ is a real number, let $\lfloor x \rfloor$ be the greatest integer that is less than or equal to $x$. If $n$ is a positive integer, let $S(n)$ be defined by \[ S(n) = \left\lfloor \frac{n}{10^{\lfloor \log n \rfloor}} \right\rfloor + 10 \left( n - 10^{\lfloor \log n \rfloor} \cdot \left\lfloor \frac{n}{10^{\lfloor \log n \rfloor}} \right\rfloor \right) \, . \] (All the logarithms are base 10.) How many integers $n$ from 1 to 2011 (inclusive) satisfy $S(S(n)) = n$?

2005 China Team Selection Test, 2

Tags: logarithm , algebra
Determine whether $\sqrt{1001^2+1}+\sqrt{1002^2+1}+ \cdots + \sqrt{2000^2+1}$ be a rational number or not?

2007 Today's Calculation Of Integral, 184

(1) For real numbers $x,\ a$ such that $0<x<a,$ prove the following inequality. \[\frac{2x}{a}<\int_{a-x}^{a+x}\frac{1}{t}\ dt<x\left(\frac{1}{a+x}+\frac{1}{a-x}\right). \] (2) Use the result of $(1)$ to prove that $0.68<\ln 2<0.71.$

1995 AIME Problems, 2

Find the last three digits of the product of the positive roots of \[ \sqrt{1995}x^{\log_{1995}x}=x^2. \]

2000 Moldova National Olympiad, Problem 5

Let $ p$ be a positive integer. Define the function $ f: \mathbb{N}\to\mathbb{N}$ by $ f(n)\equal{}a_1^p\plus{}a_2^p\plus{}\cdots\plus{}a_m^p$, where $ a_1, a_2,\ldots, a_m$ are the decimal digits of $ n$ ($ n\equal{}\overline{a_1a_2\ldots a_m}$). Prove that every sequence $ (b_k)^\infty_{k\equal{}0}$ of positive integer that satisfy $ b_{k\plus{}1}\equal{}f(b_k)$ for all $ k\in\mathbb{N}$, has a finite number of distinct terms. $ \mathbb{N}\equal{}\{1,2,3\ldots\}$

2005 AMC 12/AHSME, 23

Let $ S$ be the set of ordered triples $ (x,y,z)$ of real numbers for which \[ \log_{10} (x \plus{} y) \equal{} z\text{ and }\log_{10} (x^2 \plus{} y^2) \equal{} z \plus{} 1. \]There are real numbers $ a$ and $ b$ such that for all ordered triples $ (x,y,z)$ in $ S$ we have $ x^3 \plus{} y^3 \equal{} a \cdot 10^{3z} \plus{} b \cdot 10^{2z}$. What is the value of $ a \plus{} b$? $ \textbf{(A)}\ \frac {15}{2}\qquad \textbf{(B)}\ \frac {29}{2}\qquad \textbf{(C)}\ 15\qquad \textbf{(D)}\ \frac {39}{2}\qquad \textbf{(E)}\ 24$

1966 IMO Longlists, 30

Let $n$ be a positive integer, prove that : [b](a)[/b] $\log_{10}(n + 1) > \frac{3}{10n} +\log_{10}n ;$ [b](b)[/b] $ \log n! > \frac{3n}{10}\left( \frac 12+\frac 13 +\cdots +\frac 1n -1\right).$

2008 Pre-Preparation Course Examination, 1

$ R_k(m,n)$ is the least number such that for each coloring of $ k$-subsets of $ \{1,2,\dots,R_k(m,n)\}$ with blue and red colors, there is a subset with $ m$ elements such that all of its k-subsets are red or there is a subset with $ n$ elements such that all of its $ k$-subsets are blue. a) If we give a direction randomly to all edges of a graph $ K_n$ then what is the probability that the resultant graph does not have directed triangles? b) Prove that there exists a $ c$ such that $ R_3(4,n)\geq2^{cn}$.

2014 NIMO Problems, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

1983 AMC 12/AHSME, 12

Tags: logarithm
If $\log_7 \Big(\log_3 (\log_2 x) \Big) = 0$, then $x^{-1/2}$ equals $\displaystyle \text{(A)} \ \frac{1}{3} \qquad \text{(B)} \ \frac{1}{2 \sqrt 3} \qquad \text{(C)} \ \frac{1}{3 \sqrt 3} \qquad \text{(D)} \ \frac{1}{\sqrt{42}} \qquad \text{(E)} \ \text{none of these}$

2010 Putnam, A6

Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0.$ Prove that $\displaystyle\int_0^{\infty}\frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

1954 AMC 12/AHSME, 15

Tags: logarithm
$ \log 125$ equals: $ \textbf{(A)}\ 100 \log 1.25 \qquad \textbf{(B)}\ 5 \log 3 \qquad \textbf{(C)}\ 3 \log 25$ $ \textbf{(D)}\ 3 \minus{} 3\log 2 \qquad \textbf{(E)}\ (\log 25)(\log 5)$

2009 Singapore Senior Math Olympiad, 4

Given that $ a,b,c, x_1, x_2, ... , x_5 $ are real positives such that $ a+b+c=1 $ and $ x_1.x_2.x_3.x_4.x_5 = 1 $. Prove that \[ (ax_1^2+bx_1+c)(ax_2^2+bx_2+c)...(ax_5^2+bx_5+c)\ge 1\]

2007 AIME Problems, 7

Let \[N= \sum_{k=1}^{1000}k(\lceil \log_{\sqrt{2}}k\rceil-\lfloor \log_{\sqrt{2}}k \rfloor).\] Find the remainder when N is divided by 1000. (Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, and $\lceil x \rceil$ denotes the least integer that is greater than or equal to x.)

2006 All-Russian Olympiad, 5

Tags: logarithm , algebra
Two sequences of positive reals, $ \left(x_n\right)$ and $ \left(y_n\right)$, satisfy the relations $ x_{n \plus{} 2} \equal{} x_n \plus{} x_{n \plus{} 1}^2$ and $ y_{n \plus{} 2} \equal{} y_n^2 \plus{} y_{n \plus{} 1}$ for all natural numbers $ n$. Prove that, if the numbers $ x_1$, $ x_2$, $ y_1$, $ y_2$ are all greater than $ 1$, then there exists a natural number $ k$ such that $ x_k > y_k$.

2010 Today's Calculation Of Integral, 619

Consider a function $f(x)=\frac{\sin x}{9+16\sin ^ 2 x}\ \left(0\leq x\leq \frac{\pi}{2}\right).$ Let $a$ be the value of $x$ for which $f(x)$ is maximized. Evaluate $\int_a^{\frac{\pi}{2}} f(x)\ dx.$ [i]2010 Saitama University entrance exam/Mathematics[/i] Last Edited