This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2010 Today's Calculation Of Integral, 601

Evaluate $\int_0^{\frac{\pi}{4}} (\tan x)^{\frac{3}{2}}dx$. created by kunny

2011 Today's Calculation Of Integral, 728

Evaluate \[\int_{\frac {\pi}{12}}^{\frac{\pi}{6}} \frac{\sin x-\cos x-x(\sin x+\cos x)+1}{x^2-x(\sin x+\cos x)+\sin x\cos x}\ dx.\]

2012 Putnam, 4

Suppose that $a_0=1$ and that $a_{n+1}=a_n+e^{-a_n}$ for $n=0,1,2,\dots.$ Does $a_n-\log n$ have a finite limit as $n\to\infty?$ (Here $\log n=\log_en=\ln n.$)

2007 Today's Calculation Of Integral, 217

Evaluate $ \int_{0}^{1}e^{\sqrt{e^{x}}}\ dx\plus{}2\int_{e}^{e^{\sqrt{e}}}\ln (\ln x)\ dx$.

2013 AIME Problems, 8

The domain of the function $f(x) = \text{arcsin}(\log_{m}(nx))$ is a closed interval of length $\frac{1}{2013}$, where $m$ and $n$ are positive integers and $m > 1$. Find the remainder when the smallest possible sum $m+n$ is divided by $1000$.

2008 AMC 12/AHSME, 16

The numbers $ \log(a^3b^7)$, $ \log(a^5b^{12})$, and $ \log(a^8b^{15})$ are the first three terms of an arithmetic sequence, and the $ 12^\text{th}$ term of the sequence is $ \log{b^n}$. What is $ n$? $ \textbf{(A)}\ 40 \qquad \textbf{(B)}\ 56 \qquad \textbf{(C)}\ 76 \qquad \textbf{(D)}\ 112 \qquad \textbf{(E)}\ 143$

2006 AIME Problems, 9

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r$, where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r)$.

2005 Today's Calculation Of Integral, 39

Find the minimum value of the following function $f(x) $ defined at $0<x<\frac{\pi}{2}$. \[f(x)=\int_0^x \frac{d\theta}{\cos \theta}+\int_x^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}\]

PEN P Problems, 12

The positive function $p(n)$ is defined as the number of ways that the positive integer $n$ can be written as a sum of positive integers. Show that, for all positive integers $n \ge 2$, \[2^{\lfloor \sqrt{n}\rfloor}< p(n) < n^{3 \lfloor\sqrt{n}\rfloor }.\]

1994 China Team Selection Test, 1

Given $5n$ real numbers $r_i, s_i, t_i, u_i, v_i \geq 1 (1 \leq i \leq n)$, let $R = \frac {1}{n} \sum_{i=1}^{n} r_i$, $S = \frac {1}{n} \sum_{i=1}^{n} s_i$, $T = \frac {1}{n} \sum_{i=1}^{n} t_i$, $U = \frac {1}{n} \sum_{i=1}^{n} u_i$, $V = \frac {1}{n} \sum_{i=1}^{n} v_i$. Prove that $\prod_{i=1}^{n}\frac {r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \geq \left(\frac {RSTUV +1}{RSTUV - 1}\right)^n$.

1995 Baltic Way, 9

Prove that \[\frac{1995}{2}-\frac{1994}{3}+\frac{1993}{4}-\ldots -\frac{2}{1995}+\frac{1}{1996}=\frac{1}{999}+\frac{3}{1000}+\ldots +\frac{1995}{1996}\]

1963 AMC 12/AHSME, 30

Let \[F=\log\dfrac{1+x}{1-x}.\] Find a new function $G$ by replacing each $x$ in $F$ by \[\dfrac{3x+x^3}{1+3x^2},\] and simplify. The simplified expression $G$ is equal to: $\textbf{(A)}\ -F \qquad \textbf{(B)}\ F\qquad \textbf{(C)}\ 3F \qquad \textbf{(D)}\ F^3 \qquad \textbf{(E)}\ F^3-F$

2008 Harvard-MIT Mathematics Tournament, 4

([b]4[/b]) Let $ a$, $ b$ be constants such that $ \lim_{x\rightarrow1}\frac {(\ln(2 \minus{} x))^2}{x^2 \plus{} ax \plus{} b} \equal{} 1$. Determine the pair $ (a,b)$.

2001 Romania National Olympiad, 4

Let $f:[0,\infty )\rightarrow\mathbb{R}$ be a periodical function, with period $1$, integrable on $[0,1]$. For a strictly increasing and unbounded sequence $(x_n)_{n\ge 0},\, x_0=0,$ with $\lim_{n\rightarrow\infty} (x_{n+1}-x_n)=0$, we denote $r(n)=\max \{ k\mid x_k\le n\}$. a) Show that: \[\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{r(n)}(x_k-x_{k+1})f(x_k)=\int_0^1 f(x)\, dx\] b) Show that: \[ \lim_{n\rightarrow\infty} \frac{1}{\ln n}\sum_{k=1}^{r(n)}\frac{f(\ln k)}{k}=\int_0^1f(x)\, dx\]

1983 AIME Problems, 1

Let $x$, $y$, and $z$ all exceed 1 and let $w$ be a positive number such that \[\log_x w = 24,\quad \log_y w = 40 \quad\text{and}\quad \log_{xyz} w = 12.\] Find $\log_z w$.

1972 AMC 12/AHSME, 8

Tags: logarithm
If $|x-\log y|=x+\log y$ where $x$ and $\log y$ are real, then $\textbf{(A) }x=0\qquad\textbf{(B) }y=1\qquad\textbf{(C) }x=0\text{ and }y=1\qquad$ $\textbf{(D) }x(y-1)=0\qquad \textbf{(E) }\text{None of these}$

2006 IMC, 3

Compare $\tan(\sin x)$ with $\sin(\tan x)$, for $x\in \left]0,\frac{\pi}{2}\right[$.

2016 Tournament Of Towns, 1

Tags: algebra , logarithm
On a blackboard the product $log_{( )}[ ]\times\dots\times log_{( )}[ ]$ is written (there are 50 logarithms in the product). Donald has $100$ cards: $[2], [3],\dots, [51]$ and $(52),\dots,(101)$. He is replacing each $()$ with some card of form $(x)$ and each $[]$ with some card of form $[y]$. Find the difference between largest and smallest values Donald can achieve.

2025 District Olympiad, P1

Tags: logarithm
Solve in real numbers the equation $$\log_7 (6^x+1)=\log_6(7^x-1).$$ [i]Mathematical Gazette[/i]

2009 AIME Problems, 11

Tags: logarithm
For certain pairs $ (m,n)$ of positive integers with $ m\ge n$ there are exactly $ 50$ distinct positive integers $ k$ such that $ |\log m \minus{} \log k| < \log n$. Find the sum of all possible values of the product $ mn$.

2003 Brazil National Olympiad, 3

A graph $G$ with $n$ vertices is called [i]cool[/i] if we can label each vertex with a different positive integer not greater than $\frac{n^2}{4}$ and find a set of non-negative integers $D$ so that there is an edge between two vertices iff the difference between their labels is in $D$. Show that if $n$ is sufficiently large we can always find a graph with $n$ vertices which is not cool.

2014 NIMO Problems, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

1957 Putnam, A6

Tags: limit , logarithm
Let $a>0$, $S_1 =\ln a$ and $S_n = \sum_{i=1 }^{n-1} \ln( a- S_i )$ for $n >1.$ Show that $$ \lim_{n \to \infty} S_n = a-1.$$

1983 IMO Longlists, 46

Let $f$ be a real-valued function defined on $I = (0,+\infty)$ and having no zeros on $I$. Suppose that \[\lim_{x \to +\infty} \frac{f'(x)}{f(x)}=+\infty.\] For the sequence $u_n = \ln \left| \frac{f(n+1)}{f(n)} \right|$, prove that $u_n \to +\infty$ as $n \to +\infty.$

1962 AMC 12/AHSME, 28

Tags: logarithm
The set of $ x$-values satisfying the equation $ x^{\log_{10} x} \equal{} \frac{x^3}{100}$ consists of: $ \textbf{(A)}\ \frac{1}{10} \qquad \textbf{(B)}\ \text{10, only} \qquad \textbf{(C)}\ \text{100, only} \qquad \textbf{(D)}\ \text{10 or 100, only} \qquad \textbf{(E)}\ \text{more than two real numbers.}$