This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2007 Today's Calculation Of Integral, 225

2 Points $ P\left(a,\ \frac{1}{a}\right),\ Q\left(2a,\ \frac{1}{2a}\right)\ (a > 0)$ are on the curve $ C: y \equal{}\frac{1}{x}$. Let $ l,\ m$ be the tangent lines at $ P,\ Q$ respectively. Find the area of the figure surrounded by $ l,\ m$ and $ C$.

2014 NIMO Problems, 4

Let $n$ be largest number such that \[ \frac{2014^{100!}-2011^{100!}}{3^n} \] is still an integer. Compute the remainder when $3^n$ is divided by $1000$.

1986 Vietnam National Olympiad, 3

Suppose $ M(y)$ is a polynomial of degree $ n$ such that $ M(y) \equal{} 2^y$ for $ y \equal{} 1, 2, \ldots, n \plus{} 1$. Compute $ M(n \plus{} 2)$.

2010 Today's Calculation Of Integral, 666

Let $f(x)$ be a function defined in $0<x<\frac{\pi}{2}$ satisfying: (i) $f\left(\frac{\pi}{6}\right)=0$ (ii) $f'(x)\tan x=\int_{\frac{\pi}{6}}^x \frac{2\cos t}{\sin t}dt$. Find $f(x)$. [i]1987 Sapporo Medical University entrance exam[/i]

Today's calculation of integrals, 893

Find the minimum value of $f(x)=\int_0^{\frac{\pi}{4}} |\tan t-x|dt.$

2017 AIME Problems, 7

Find the number of integer values of $k$ in the closed interval $[-500,500]$ for which the equation $\log(kx)=2\log(x+2)$ has exactly one real solution.

2004 China Western Mathematical Olympiad, 4

Let $\mathbb{N}$ be the set of positive integers. Let $n\in \mathbb{N}$ and let $d(n)$ be the number of divisors of $n$. Let $\varphi(n)$ be the Euler-totient function (the number of co-prime positive integers with $n$, smaller than $n$). Find all non-negative integers $c$ such that there exists $n\in\mathbb{N}$ such that \[ d(n) + \varphi(n) = n+c , \] and for such $c$ find all values of $n$ satisfying the above relationship.

2012 Today's Calculation Of Integral, 795

Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2+\sin x}{1+\cos x}\ dx.$

2014 Online Math Open Problems, 30

For a positive integer $n$, an [i]$n$-branch[/i] $B$ is an ordered tuple $(S_1, S_2, \dots, S_m)$ of nonempty sets (where $m$ is any positive integer) satisfying $S_1 \subset S_2 \subset \dots \subset S_m \subseteq \{1,2,\dots,n\}$. An integer $x$ is said to [i]appear[/i] in $B$ if it is an element of the last set $S_m$. Define an [i]$n$-plant[/i] to be an (unordered) set of $n$-branches $\{ B_1, B_2, \dots, B_k\}$, and call it [i]perfect[/i] if each of $1$, $2$, \dots, $n$ appears in exactly one of its branches. Let $T_n$ be the number of distinct perfect $n$-plants (where $T_0=1$), and suppose that for some positive real number $x$ we have the convergence \[ \ln \left( \sum_{n \ge 0} T_n \cdot \frac{\left( \ln x \right)^n}{n!} \right) = \frac{6}{29}. \] If $x = \tfrac mn$ for relatively prime positive integers $m$ and $n$, compute $m+n$. [i]Proposed by Yang Liu[/i]

2012 Waseda University Entrance Examination, 4

For a function $f(x)=\ln (1+\sqrt{1-x^2})-\sqrt{1-x^2}-\ln x\ (0<x<1)$, answer the following questions: (1) Find $f'(x)$. (2) Sketch the graph of $y=f(x)$. (3) Let $P$ be a mobile point on the curve $y=f(x)$ and $Q$ be a point which is on the tangent at $P$ on the curve $y=f(x)$ and such that $PQ=1$. Note that the $x$-coordinate of $Q$ is les than that of $P$. Find the locus of $Q$.

2013 AMC 12/AHSME, 14

The sequence \[\log_{12}{162},\, \log_{12}{x},\, \log_{12}{y},\, \log_{12}{z},\, \log_{12}{1250}\] is an arithmetic progression. What is $x$? $ \textbf{(A)} \ 125\sqrt{3} \qquad \textbf{(B)} \ 270 \qquad \textbf{(C)} \ 162\sqrt{5} \qquad \textbf{(D)} \ 434 \qquad \textbf{(E)} \ 225\sqrt{6}$

2019 Ramnicean Hope, 3

Calculate $ \lfloor \log_3 5 +\log_5 7 +\log_7 3 \rfloor .$ [i]Petre Rău[/i]

PEN G Problems, 15

Prove that for any $ p, q\in\mathbb{N}$ with $ q > 1$ the following inequality holds: \[ \left\vert\pi\minus{}\frac{p}{q}\right\vert\ge q^{\minus{}42}.\]

2010 Today's Calculation Of Integral, 560

Let $ K$ be the figure bounded by the graph of function $ y \equal{} \frac {x}{\sqrt {1 \minus{} x^2}}$, $ x$ axis and the line $ x \equal{} \frac {1}{2}$. (1) Find the volume $ V_1$ of the solid generated by rotation of $ K$ around $ x$ axis. (2) Find the volume $ V_2$ of the solid generated by rotation of $ K$ around $ y$ axis. Please solve question (2) without using the shell method for Japanese High School Students those who don't learn it.

1962 AMC 12/AHSME, 17

Tags: logarithm
If $ a \equal{} \log_8 225$ and $ b \equal{} \log_2 15,$ then $ a$, in terms of $ b,$ is: $ \textbf{(A)}\ \frac{b}{2} \qquad \textbf{(B)}\ \frac{2b}{3}\qquad \textbf{(C)}\ b \qquad \textbf{(D)}\ \frac{3b}{2} \qquad \textbf{(E)}\ 2b$

2013 AMC 12/AHSME, 22

Tags: vieta , logarithm
Let $m>1$ and $n>1$ be integers. Suppose that the product of the solutions for $x$ of the equation \[8(\log_n x)(\log_m x) - 7 \log_n x - 6 \log_m x - 2013 = 0\] is the smallest possible integer. What is $m+n$? ${ \textbf{(A)}\ 12\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 24\qquad\textbf{(D}}\ 48\qquad\textbf{(E)}\ 272 $

Today's calculation of integrals, 892

Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\cos x}\ dx.$

1982 Poland - Second Round, 3

Prove that for every natural number $ n \geq 2 $ the inequality holds $$ \log_n 2 \cdot \log_n 4 \cdot \log_n 6 \ldots \log_n (2n - 2) \leq 1.$$

1967 Miklós Schweitzer, 5

Let $ f$ be a continuous function on the unit interval $ [0,1]$. Show that \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f(\frac{x_1+...+x_n}{n})dx_1...dx_n=f(\frac12)\] and \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f (\sqrt[n]{x_1...x_n})dx_1...dx_n=f(\frac1e).\]

2012 Purple Comet Problems, 9

Tags: logarithm
Find the value of $x$ that satisfies $\log_{3}(\log_9x)=\log_9(\log_3x)$

2012 Today's Calculation Of Integral, 785

For a positive real number $x$, find the minimum value of $f(x)=\int_x^{2x} (t\ln t-t)dt.$

1982 Miklós Schweitzer, 4

Let \[ f(n)= \sum_{p|n , \;p^{\alpha} \leq n < p^{\alpha+1} \ } p^{\alpha} .\] Prove that \[ \limsup_{n \rightarrow \infty}f(n) \frac{ \log \log n}{n \log n}=1 .\] [i]P. Erdos[/i]

2005 Today's Calculation Of Integral, 9

Calculate the following indefinite integrals. [1] $\int (x^2+4x-3)^2(x+2)dx$ [2] $\int \frac{\ln x}{x(\ln x+1)}dx$ [3] $\int \frac{\sin \ (\pi \log _2 x)}{x}dx$ [4] $\int \frac{dx}{\sin x\cos ^ 2 x}$ [5] $\int \sqrt{1-3x}\ dx$

2000 Tuymaada Olympiad, 4

Prove for real $x_1$, $x_2$, ....., $x_n$, $0 < x_k \leq {1\over 2}$, the inequality \[ \left( {n \over x_1 + \dots + x_n} - 1 \right)^n \leq \left( {1 \over x_1} - 1 \right) \dots \left( {1 \over x_n} - 1 \right). \]

2009 Today's Calculation Of Integral, 456

Find $ \lim_{n\to\infty} \frac{\pi}{n}\left\{\frac{1}{\sin \frac{\pi (n\plus{}1)}{4n}}\plus{}\frac{1}{\sin \frac{\pi (n\plus{}2)}{4n}}\plus{}\cdots \plus{}\frac{1}{\sin \frac{\pi (n\plus{}n)}{4n}}\right\}$