This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2012 Today's Calculation Of Integral, 832

Find the limit \[\lim_{n\to\infty} \frac{1}{n\ln n}\int_{\pi}^{(n+1)\pi} (\sin ^ 2 t)(\ln t)\ dt.\]

1973 Miklós Schweitzer, 5

Verify that for every $ x > 0$, \[ \frac{\Gamma'(x\plus{}1)}{\Gamma (x\plus{}1)} > \log x.\] [i]P. Medgyessy[/i]

1972 Swedish Mathematical Competition, 4

Put $x = \log_{10} 2$, $y = \log_{10} 3$. Then $15 < 16$ implies $1 - x + y < 4x$, so $1 + y < 5x$. Derive similar inequalities from $80 < 81$ and $243 < 250$. Hence show that \[ 0.47 < \log_{10} 3 < 0.482. \]

2000 AIME Problems, 9

The system of equations \begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\ \log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\ \end{eqnarray*} has two solutions $ (x_{1},y_{1},z_{1})$ and $ (x_{2},y_{2},z_{2}).$ Find $ y_{1} + y_{2}.$

2024 AMC 12/AHSME, 8

How many angles $\theta$ with $0\le\theta\le2\pi$ satisfy $\log(\sin(3\theta))+\log(\cos(2\theta))=0$? $ \textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4 \qquad $

2010 Korea Junior Math Olympiad, 1

Prove that $ 7^{2^{20}} + 7^{2^{19}} + 1 $ has at least $ 21 $ distinct prime divisors.

2009 Today's Calculation Of Integral, 461

Let $ I_n\equal{}\int_0^{\sqrt{3}} \frac{1}{1\plus{}x^{n}}\ dx\ (n\equal{}1,\ 2,\ \cdots)$. (1) Find $ I_1,\ I_2$. (2) Find $ \lim_{n\to\infty} I_n$.

2007 Today's Calculation Of Integral, 222

Find $ \lim_{a\rightarrow\infty}\int_{a}^{a\plus{}1}\frac{x}{x\plus{}\ln x}\ dx$.

2014 Contests, 3

Tags: hmmt , logarithm
Let \[ A = \frac{1}{6}((\log_2(3))^3-(\log_2(6))^3-(\log_2(12))^3+(\log_2(24))^3) \]. Compute $2^A$.

2013 ELMO Shortlist, 2

Let $n$ be a fixed positive integer. Initially, $n$ 1's are written on a blackboard. Every minute, David picks two numbers $x$ and $y$ written on the blackboard, erases them, and writes the number $(x+y)^4$ on the blackboard. Show that after $n-1$ minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$. [i]Proposed by Calvin Deng[/i]

2004 China Team Selection Test, 2

Let u be a fixed positive integer. Prove that the equation $n! = u^{\alpha} - u^{\beta}$ has a finite number of solutions $(n, \alpha, \beta).$

1981 AMC 12/AHSME, 13

Tags: logarithm
Suppose that at the end of any year, a unit of money has lost $10\%$ of the value it had at the beginning of that year. Find the smallest integer $n$ such that after $n$ years, the money will have lost at least $90\%$ of its value. (To the nearest thousandth $\log_{10}3=.477$.) $\text{(A)}\ 14 \qquad \text{(B)}\ 16 \qquad \text{(C)}\ 18 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 22$

2006 Hanoi Open Mathematics Competitions, 3

Tags: algebra , logarithm
Suppose that $a^{\log_{b}c}+b^{\log_{c}a}=m$. Find the value of $c^{\log_{b}a}+a^{\log_{c}b}$ .

2007 IMC, 1

Let $ f : \mathbb{R}\to \mathbb{R}$ be a continuous function. Suppose that for any $ c > 0$, the graph of $ f$ can be moved to the graph of $ cf$ using only a translation or a rotation. Does this imply that $ f(x) = ax+b$ for some real numbers $ a$ and $ b$?

2022 VTRMC, 4

Calculate the exact value of the series $\sum _{n=2} ^\infty \log (n^3 +1) - \log (n^3 - 1)$ and provide justification.

1992 Hungary-Israel Binational, 3

We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$ \[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},\] where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof. We call a nonnegative integer $r$-Fibonacci number if it is a sum of $r$ (not necessarily distinct) Fibonacci numbers. Show that there infinitely many positive integers that are not $r$-Fibonacci numbers for any $r, 1 \leq r\leq 5.$

1977 Miklós Schweitzer, 3

Prove that if $ a,x,y$ are $ p$-adic integers different from $ 0$ and $ p | x, pa | xy$, then \[ \frac 1y \frac{(1\plus{}x)^y\minus{}1}{x} \equiv \frac{\log (1\plus{}x)}{x} \;\;\;\; ( \textrm{mod} \; a\ ) \\\\ .\] [i]L. Redei[/i]

2006 Pre-Preparation Course Examination, 5

Powers of $2$ in base $10$ start with $3$ or $4$ more frequently? What is their state in base $3$? First write down an exact form of the question.

1959 AMC 12/AHSME, 11

Tags: logarithm
The logarithm of $.0625$ to the base $2$ is: $ \textbf{(A)}\ .025 \qquad\textbf{(B)}\ .25\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ -4\qquad\textbf{(E)}\ -2 $

1999 National High School Mathematics League, 3

Tags: logarithm
If $(\log_2 3)^x-(\log_5 3)^x\geq (\log_2 3)^{-y}-(\log_5 3)^{-y}$, then $\text{(A)}x-y\geq0\qquad\text{(B)}x+y\geq0\qquad\text{(C)}x-y\leq0\qquad\text{(D)}x+y\leq0$

1992 IMO Longlists, 74

Let $S = \{\frac{\pi^n}{1992^m} | m,n \in \mathbb Z \}.$ Show that every real number $x \geq 0$ is an accumulation point of $S.$

2024 IMC, 2

For $n=1,2,\dots$ let \[S_n=\log\left(\sqrt[n^2]{1^1 \cdot 2^2 \cdot \dotsc \cdot n^n}\right)-\log(\sqrt{n}),\] where $\log$ denotes the natural logarithm. Find $\lim_{n \to \infty} S_n$.

1959 AMC 12/AHSME, 45

Tags: logarithm , algebra
If $\left(\log_3 x\right)\left(\log_x 2x\right)\left( \log_{2x} y\right)=\log_{x}x^2$, then $y$ equals: $ \textbf{(A)}\ \frac92\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 27\qquad\textbf{(E)}\ 81 $

1984 All Soviet Union Mathematical Olympiad, 392

What is more $\frac{2}{201}$ or $\ln\frac{101}{100}$? (No differential calculus allowed).

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.