This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2010 Putnam, A4

Prove that for each positive integer $n,$ the number $10^{10^{10^n}}+10^{10^n}+10^n-1$ is not prime.

2010 Today's Calculation Of Integral, 644

For a constant $p$ such that $\int_1^p e^xdx=1$, prove that \[\left(\int_1^p e^x\cos x\ dx\right)^2+\left(\int_1^p e^x\sin x\ dx\right)^2>\frac 12.\] Own

1998 AMC 8, 17

Problems 15, 16, and 17 all refer to the following: In the very center of the Irenic Sea lie the beautiful Nisos Isles. In 1998 the number of people on these islands is only 200, but the population triples every 25 years. Queen Irene has decreed that there must be at least 1.5 square miles for every person living in the Isles. The total area of the Nisos Isles is 24,900 square miles. 17. In how many years, approximately, from 1998 will the population of Nisos be as much as Queen Irene has proclaimed that the islands can support? $ \text{(A)}\ 50\text{ yrs.}\qquad\text{(B)}\ 75\text{ yrs.}\qquad\text{(C)}\ 100\text{ yrs.}\qquad\text{(D)}\ 125\text{ yrs.}\qquad\text{(E)}\ 150\text{ yrs.} $

2017 Romania National Olympiad, 1

Solve in the set of real numbers the equation $ a^{[ x ]} +\log_a\{ x \} =x , $ where $ a $ is a real number from the interval $ (0,1). $ $ [] $ and $ \{\} $ [i]denote the floor, respectively, the fractional part.[/i]

2011 Today's Calculation Of Integral, 753

Find $\lim_{n\to\infty} \sum_{k=1}^{2n} \frac{n}{2n^2+3nk+k^2}.$

1985 AMC 12/AHSME, 15

Tags: logarithm
If $ a$ and $ b$ are positive numbers such that $ a^b \equal{} b^a$ and $ b \equal{} 9a$, then the value of $ a$ is: $ \textbf{(A)}\ 9\qquad \textbf{(B)}\ \frac {1}{9}\qquad \textbf{(C)}\ \sqrt [9] {9}\qquad \textbf{(D)}\ \sqrt [3] {9}\qquad \textbf{(E)}\ \sqrt [4] {3}$

2010 Today's Calculation Of Integral, 547

Find the minimum value of $ \int_0^1 |e^{ \minus{} x} \minus{} a|dx\ ( \minus{} \infty < a < \infty)$.

2019 CMI B.Sc. Entrance Exam, 6

$(a)$ Compute - \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg] \end{align*} $(b)$ For $x > 0 $ define $F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . $\\ \\$1.$ Determine the open interval(s) (if any) where $F ( x )$ is decreasing and all the open interval(s) (if any) where $F ( x )$ is increasing.\\ \\$2.$ Determine all the local minima of $F ( x )$ (if any) and all the local maxima of $F ( x )$ (if any) $.$

2011 Kosovo National Mathematical Olympiad, 1

Tags: logarithm
Let $x = \left( 1 + \frac{1}{n}\right)^n$ and $y = \left( 1 + \frac{1}{n}\right)^{n+1}$ where $n \in \mathbb{N}$. Which one of the numbers $x^y$, $y^x$ is bigger ?

Today's calculation of integrals, 853

Let $0<a<\frac {\pi}2.$ Find $\lim_{a\rightarrow +0} \frac{1}{a^3}\int_0^a \ln\ (1+\tan a\tan x)\ dx.$

2024 IMC, 2

For $n=1,2,\dots$ let \[S_n=\log\left(\sqrt[n^2]{1^1 \cdot 2^2 \cdot \dotsc \cdot n^n}\right)-\log(\sqrt{n}),\] where $\log$ denotes the natural logarithm. Find $\lim_{n \to \infty} S_n$.

2011 AMC 12/AHSME, 19

At a competition with $N$ players, the number of players given elite status is equal to \[2^{1+\lfloor\log_2{(N-1)}\rfloor} - N. \] Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$? $ \textbf{(A)}\ 38\qquad \textbf{(B)}\ 90 \qquad \textbf{(C)}\ 154 \qquad \textbf{(D)}\ 406 \qquad \textbf{(E)}\ 1024$

2009 Harvard-MIT Mathematics Tournament, 8

Compute \[\int_1^{\sqrt{3}} x^{2x^2+1}+\ln\left(x^{2x^{2x^2+1}}\right)dx.\]

2007 Romania National Olympiad, 2

Tags: logarithm , algebra
Solve the equation \[2^{x^{2}+x}+\log_{2}x = 2^{x+1}\]

2013 ELMO Shortlist, 9

Let $a, b, c$ be positive reals, and let $\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P$. Prove that \[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\][i]Proposed by David Stoner[/i]

PEN E Problems, 15

Show that there exist two consecutive squares such that there are at least $1000$ primes between them.

2007 Princeton University Math Competition, 1

Take the square with vertices $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. Choose a random point in this square and draw the line segment from it to $(0,0)$. Choose a second random point in this square and draw the line segment from it to $(1,0)$. What is the probability that the two line segments intersect?

2005 Today's Calculation Of Integral, 82

Let $0<a<b$.Prove the following inequaliy. \[\frac{1}{b-a}\int_a^b \left(\ln \frac{b}{x}\right)^2 dx<2\]

1996 AMC 12/AHSME, 8

Tags: logarithm
If $3 = k \cdot 2^r$ and $15 = k \cdot 4^r$, then $r =$ $\text{(A)}\ - \log_2 5 \qquad \text{(B)}\ \log_5 2 \qquad \text{(C)}\ \log_{10} 5 \qquad \text{(D)}\ \log_2 5 \qquad \text{(E)}\ \displaystyle \frac{5}{2}$

2010 Today's Calculation Of Integral, 607

On the coordinate plane, Let $C$ be the graph of $y=(\ln x)^2\ (x>0)$ and for $\alpha >0$, denote $L(\alpha)$ be the tangent line of $C$ at the point $(\alpha ,\ (\ln \alpha)^2).$ (1) Draw the graph. (2) Let $n(\alpha)$ be the number of the intersection points of $C$ and $L(\alpha)$. Find $n(\alpha)$. (3) For $0<\alpha <1$, let $S(\alpha)$ be the area of the region bounded by $C,\ L(\alpha)$ and the $x$-axis. Find $S(\alpha)$. 2010 Tokyo Institute of Technology entrance exam, Second Exam.

1996 Brazil National Olympiad, 3

Let $f(n)$ be the smallest number of 1s needed to represent the positive integer $n$ using only 1s, $+$ signs, $\times$ signs and brackets $(,)$. For example, you could represent 80 with 13 1s as follows: $(1+1+1+1+1)(1+1+1+1)(1+1+1+1)$. Show that $3 \log(n) \leq \log(3)f(n) \leq 5 \log(n)$ for $n > 1$.

2022 Bulgarian Spring Math Competition, Problem 11.1

Tags: logarithm , algebra
Solve the equation \[(x+1)\log^2_{3}x+4x\log_{3}x-16=0\]

2012 Today's Calculation Of Integral, 773

For $x\geq 0$ find the value of $x$ by which $f(x)=\int_0^x 3^t(3^t-4)(x-t)dt$ is minimized.

1973 Swedish Mathematical Competition, 1

Tags: logarithm , algebra
$\log_8 2 = 0.2525$ in base $8$ (to $4$ places of decimals). Find $\log_8 4$ in base $8$ (to $4$ places of decimals).

2007 Today's Calculation Of Integral, 249

Determine the sign of $ \int_{\frac{1}{2}}^2 \frac{\ln t}{1\plus{}t^n}\ dt\ (n\equal{}1, 2, \cdots)$.