This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 35

1974 IMO Longlists, 45

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$

2018 Brazil Undergrad MO, 5

Consider the set $A = \left\{\frac{j}{4}+\frac{100}{j}|j=1,2,3,..\right\} $ What is the smallest number that belongs to the $ A $ set?

1990 IMO Longlists, 75

Let $ n$ be a composite natural number and $ p$ a proper divisor of $ n.$ Find the binary representation of the smallest natural number $ N$ such that \[ \frac{(1 \plus{} 2^p \plus{} 2^{n\minus{}p})N \minus{} 1}{2^n}\] is an integer.

1973 IMO Shortlist, 9

Let $Ox, Oy, Oz$ be three rays, and $G$ a point inside the trihedron $Oxyz$. Consider all planes passing through $G$ and cutting $Ox, Oy, Oz$ at points $A,B,C$, respectively. How is the plane to be placed in order to yield a tetrahedron $OABC$ with minimal perimeter ?

1994 French Mathematical Olympiad, Problem 4

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

2009 Greece Team Selection Test, 4

Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions: [b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$. [b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$. [b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$. Determine the minimum possible sum of the [i]"values"[/i] of the segments.

1968 IMO Shortlist, 1

Two ships sail on the sea with constant speeds and fixed directions. It is known that at $9:00$ the distance between them was $20$ miles; at $9:35$, $15$ miles; and at $9:55$, $13$ miles. At what moment were the ships the smallest distance from each other, and what was that distance ?

1973 IMO Shortlist, 14

A soldier needs to check if there are any mines in the interior or on the sides of an equilateral triangle $ABC.$ His detector can detect a mine at a maximum distance equal to half the height of the triangle. The soldier leaves from one of the vertices of the triangle. Which is the minimum distance that he needs to traverse so that at the end of it he is sure that he completed successfully his mission?

1973 IMO, 1

A soldier needs to check if there are any mines in the interior or on the sides of an equilateral triangle $ABC.$ His detector can detect a mine at a maximum distance equal to half the height of the triangle. The soldier leaves from one of the vertices of the triangle. Which is the minimum distance that he needs to traverse so that at the end of it he is sure that he completed successfully his mission?

1982 IMO Shortlist, 11

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$