This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 35

2009 Greece Team Selection Test, 4

Given are $N$ points on the plane such that no three of them are collinear,which are coloured red,green and black.We consider all the segments between these points and give to each segment a [i]"value"[/i] according to the following conditions: [b]i.[/b]If at least one of the endpoints of a segment is black then the segment's [i]"value"[/i] is $0$. [b]ii.[/b]If the endpoints of the segment have the same colour,re or green,then the segment's [i]"value"[/i] is $1$. [b]iii.[/b]If the endpoints of the segment have different colours but none of them is black,then the segment's [i]"value"[/i] is $-1$. Determine the minimum possible sum of the [i]"values"[/i] of the segments.

2010 Bosnia and Herzegovina Junior BMO TST, 2

Let us consider every third degree polynomial $P(x)$ with coefficients as nonnegative positive integers such that $P(1)=20$. Among them determine polynomial for which is: $a)$ Minimal value of $P(4)$ $b)$ Maximal value of $P(3)/P(2)$

1973 IMO, 1

A soldier needs to check if there are any mines in the interior or on the sides of an equilateral triangle $ABC.$ His detector can detect a mine at a maximum distance equal to half the height of the triangle. The soldier leaves from one of the vertices of the triangle. Which is the minimum distance that he needs to traverse so that at the end of it he is sure that he completed successfully his mission?

1986 IMO Shortlist, 19

A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$

1973 IMO Shortlist, 9

Let $Ox, Oy, Oz$ be three rays, and $G$ a point inside the trihedron $Oxyz$. Consider all planes passing through $G$ and cutting $Ox, Oy, Oz$ at points $A,B,C$, respectively. How is the plane to be placed in order to yield a tetrahedron $OABC$ with minimal perimeter ?

1983 IMO Shortlist, 17

Let $P_1, P_2, \dots , P_n$ be distinct points of the plane, $n \geq 2$. Prove that \[ \max_{1\leq i<j\leq n} P_iP_j > \frac{\sqrt 3}{2}(\sqrt n -1) \min_{1\leq i<j\leq n} P_iP_j \]

1981 IMO Shortlist, 15

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

1973 IMO Shortlist, 14

A soldier needs to check if there are any mines in the interior or on the sides of an equilateral triangle $ABC.$ His detector can detect a mine at a maximum distance equal to half the height of the triangle. The soldier leaves from one of the vertices of the triangle. Which is the minimum distance that he needs to traverse so that at the end of it he is sure that he completed successfully his mission?

1981 IMO, 1

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

2001 IMO Shortlist, 3

Let $ABC$ be a triangle with centroid $G$. Determine, with proof, the position of the point $P$ in the plane of $ABC$ such that $AP{\cdot}AG + BP{\cdot}BG + CP{\cdot}CG$ is a minimum, and express this minimum value in terms of the side lengths of $ABC$.