This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2023 IMC, 4

Let $p$ be a prime number and let $k$ be a positive integer. Suppose that the numbers $a_i=i^k+i$ for $i=0,1, \ldots,p-1$ form a complete residue system modulo $p$. What is the set of possible remainders of $a_2$ upon division by $p$?

2007 Pre-Preparation Course Examination, 22

Prove that for any positive integer $n \geq 3$ there exist positive integers $a_1,a_2,\cdots , a_n$ such that \[a_1a_2\cdots a_n \equiv a_i \pmod {a_i^2} \qquad \forall i \in \{1,2,\cdots ,n\}\]

PEN R Problems, 2

Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers.

2013 Princeton University Math Competition, 6

Suppose the function $\psi$ satisfies $\psi(1)=\sqrt{2+\sqrt{2+\sqrt2}}$ and $\psi(3x)+3\psi(x)=\psi(x)^3$ for all real $x$. Determine the greatest integer less than $\textstyle\prod_{n=1}^{100}\psi(3^n)$.

1970 IMO Longlists, 2

Prove that the two last digits of $9^{9^{9}}$ and $9^{9^{9^{9}}}$ are the same in decimal representation.

1999 Vietnam National Olympiad, 3

Let $ S \equal{} \{0,1,2,\ldots,1999\}$ and $ T \equal{} \{0,1,2,\ldots \}.$ Find all functions $ f: T \mapsto S$ such that [b](i)[/b] $ f(s) \equal{} s \quad \forall s \in S.$ [b](ii)[/b] $ f(m\plus{}n) \equal{} f(f(m)\plus{}f(n)) \quad \forall m,n \in T.$

2001 Stanford Mathematics Tournament, 3

Find the 2000th positive integer that is not the difference between any two integer squares.

2010 BMO TST, 1

[b]a) [/b]Is the number $ 1111\cdots11$ (with $ 2010$ ones) a prime number? [b]b)[/b] Prove that every prime factor of $ 1111\cdots11$ (with $ 2011$ ones) is of the form $ 4022j\plus{}1$ where $ j$ is a natural number.

Kvant 2023, M2757

Let $p{}$ be a prime number. There are $p{}$ integers $a_0,\ldots,a_{p-1}$ around a circle. In one move, it is allowed to select some integer $k{}$ and replace the existing numbers via the operation $a_i\mapsto a_i-a_{i+k}$ where indices are taken modulo $p{}.$ Find all pairs of natural numbers $(m, n)$ with $n>1$ such that for any initial set of $p{}$ numbers, after performing any $m{}$ moves, the resulting $p{}$ numbers will all be divisible by $n{}.$ [i]Proposed by P. Kozhevnikov[/i]

2011 Olympic Revenge, 2

Let $p$ be a fixed prime. Determine all the integers $m$, as function of $p$, such that there exist $a_1, a_2, \ldots, a_p \in \mathbb{Z}$ satisfying \[m \mid a_1^p + a_2^p + \cdots + a_p^p - (p+1).\]

1987 IMO Longlists, 1

Let $x_1, x_2,\cdots, x_n$ be $n$ integers. Let $n = p + q$, where $p$ and $q$ are positive integers. For $i = 1, 2, \cdots, n$, put \[S_i = x_i + x_{i+1} +\cdots + x_{i+p-1} \text{ and } T_i = x_{i+p} + x_{i+p+1} +\cdots + x_{i+n-1}\] (it is assumed that $x_{i+n }= x_i$ for all $i$). Next, let $m(a, b)$ be the number of indices $i$ for which $S_i$ leaves the remainder $a$ and $T_i$ leaves the remainder $b$ on division by $3$, where $a, b \in \{0, 1, 2\}$. Show that $m(1, 2)$ and $m(2, 1)$ leave the same remainder when divided by $3.$

2024 Korea Junior Math Olympiad (First Round), 17.

Find the number of $n$ that follow the following: $ \bigstar $ The number of integers $ (x,y,z) $ following this equation is not a multiple of 4. $ 2n=x^2+2y^2+2x^2+2xy+2yz $

2010 Baltic Way, 18

Let $p$ be a prime number. For each $k$, $1\le k\le p-1$, there exists a unique integer denoted by $k^{-1}$ such that $1\le k^{-1}\le p-1$ and $k^{-1}\cdot k=1\pmod{p}$. Prove that the sequence \[1^{-1},\quad 1^{-1}+2^{-1},\quad 1^{-1}+2^{-1}+3^{-1},\quad \ldots ,\quad 1^{-1}+2^{-1}+\ldots +(p-1)^{-1} \] (addition modulo $p$) contains at most $\frac{p+1}{2}$ distinct elements.

2014 Contests, 2

Find all all positive integers x,y,and z satisfying the equation $x^3=3^y7^z+8$

1993 Turkey MO (2nd round), 1

Prove that there is a number such that its decimal represantation ends with 1994 and it can be written as $1994\cdot 1993^{n}$ ($n\in{Z^{+}}$)

2005 Romania Team Selection Test, 4

a) Prove that there exists a sequence of digits $\{c_n\}_{n\geq 1}$ such that or each $n\geq 1$ no matter how we interlace $k_n$ digits, $1\leq k_n\leq 9$, between $c_n$ and $c_{n+1}$, the infinite sequence thus obtained does not represent the fractional part of a rational number. b) Prove that for $1\leq k_n\leq 10$ there is no such sequence $\{c_n\}_{n\geq 1}$. [i]Dan Schwartz[/i]

2011 Romania Team Selection Test, 3

Let $S$ be a finite set of positive integers which has the following property:if $x$ is a member of $S$,then so are all positive divisors of $x$. A non-empty subset $T$ of $S$ is [i]good[/i] if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is a power of a prime number. A non-empty subset $T$ of $S$ is [i]bad[/i] if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is not a power of a prime number. A set of an element is considered both [i]good[/i] and [i]bad[/i]. Let $k$ be the largest possible size of a [i]good[/i] subset of $S$. Prove that $k$ is also the smallest number of pairwise-disjoint [i]bad[/i] subsets whose union is $S$.

PEN D Problems, 19

Let $a_{1}$, $\cdots$, $a_{k}$ and $m_{1}$, $\cdots$, $m_{k}$ be integers with $2 \le m_{1}$ and $2m_{i}\le m_{i+1}$ for $1 \le i \le k-1$. Show that there are infinitely many integers $x$ which do not satisfy any of congruences \[x \equiv a_{1}\; \pmod{m_{1}}, x \equiv a_{2}\; \pmod{m_{2}}, \cdots, x \equiv a_{k}\; \pmod{m_{k}}.\]

2009 AIME Problems, 6

Let $ m$ be the number of five-element subsets that can be chosen from the set of the first $ 14$ natural numbers so that at least two of the five numbers are consecutive. Find the remainder when $ m$ is divided by $ 1000$.

2014 Taiwan TST Round 1, 2

For a fixed integer $k$, determine all polynomials $f(x)$ with integer coefficients such that $f(n)$ divides $(n!)^k$ for every positive integer $n$.

PEN O Problems, 32

An odd integer $ n \ge 3$ is said to be nice if and only if there is at least one permutation $ a_{1}, \cdots, a_{n}$ of $ 1, \cdots, n$ such that the $ n$ sums $ a_{1} \minus{} a_{2} \plus{} a_{3} \minus{} \cdots \minus{} a_{n \minus{} 1} \plus{} a_{n}$, $ a_{2} \minus{} a_{3} \plus{} a_{3} \minus{} \cdots \minus{} a_{n} \plus{} a_{1}$, $ a_{3} \minus{} a_{4} \plus{} a_{5} \minus{} \cdots \minus{} a_{1} \plus{} a_{2}$, $ \cdots$, $ a_{n} \minus{} a_{1} \plus{} a_{2} \minus{} \cdots \minus{} a_{n \minus{} 2} \plus{} a_{n \minus{} 1}$ are all positive. Determine the set of all `nice' integers.

2010 ISI B.Stat Entrance Exam, 2

Let $a,b,c,d$ be distinct digits such that the product of the $2$-digit numbers $\overline{ab}$ and $\overline{cb}$ is of the form $\overline{ddd}$. Find all possible values of $a+b+c+d$.

2009 National Olympiad First Round, 22

$ (a_n)_{n \equal{} 0}^\infty$ is a sequence on integers. For every $ n \ge 0$, $ a_{n \plus{} 1} \equal{} a_n^3 \plus{} a_n^2$. The number of distinct residues of $ a_i$ in $ \pmod {11}$ can be at most? $\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 6$

1998 Vietnam National Olympiad, 3

The sequence $\{a_{n}\}_{n\geq 0}$ is defined by $a_{0}=20,a_{1}=100,a_{n+2}=4a_{n+1}+5a_{n}+20(n=0,1,2,...)$. Find the smallest positive integer $h$ satisfying $1998|a_{n+h}-a_{n}\forall n=0,1,2,...$

2013 Finnish National High School Mathematics Competition, 5

Find all integer triples $(m,p,q)$ satisfying \[2^mp^2+1=q^5\] where $m>0$ and both $p$ and $q$ are prime numbers.