This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2010 Romanian Masters In Mathematics, 1

For a finite non empty set of primes $P$, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of $P$. (i) Show that $|P|\le m(P)$, with equality if and only if $\min(P)>|P|$. (ii) Show that $m(P)<(|P|+1)(2^{|P|}-1)$. (The number $|P|$ is the size of set $P$) [i]Dan Schwarz, Romania[/i]

PEN H Problems, 71

Let $n$ be a positive integer. Prove that the equation \[x+y+\frac{1}{x}+\frac{1}{y}=3n\] does not have solutions in positive rational numbers.

1996 IMO Shortlist, 2

The positive integers $ a$ and $ b$ are such that the numbers $ 15a \plus{} 16b$ and $ 16a \minus{} 15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?

1999 IMO Shortlist, 4

Let $A$ be a set of $N$ residues $\pmod{N^{2}}$. Prove that there exists a set $B$ of of $N$ residues $\pmod{N^{2}}$ such that $A + B = \{a+b|a \in A, b \in B\}$ contains at least half of all the residues $\pmod{N^{2}}$.

1992 IMO Longlists, 63

Let $a$ and $b$ be integers. Prove that $\frac{2a^2-1}{b^2+2}$ is not an integer.

2002 AIME Problems, 12

Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z\not= i,$ and let $z_n=F(z_{n-1})$ for all positive integers $n.$ Given that $z_0=\frac 1{137}+i$ and $z_{2002}=a+bi,$ where $a$ and $b$ are real numbers, find $a+b.$

2010 Contests, 1

Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and \[\gcd(P(0), P(1), P(2), \ldots ) = 1.\] Show there are infinitely many $n$ such that \[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]

1992 AMC 8, 15

What is the $1992^\text{nd}$ letter in this sequence? \[\text{ABCDEDCBAABCDEDCBAABCDEDCBAABCDEDC}\cdots \] $\text{(A)}\ \text{A} \qquad \text{(B)}\ \text{B} \qquad \text{(C)}\ \text{C} \qquad \text{(D)}\ \text{D} \qquad \text{(E)}\ \text{E}$

1975 IMO Shortlist, 6

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1990 IMO Longlists, 26

Prove that there exist infinitely many positive integers $n$ such that the number $\frac{1^2+2^2+\cdots+n^2}{n}$ is a perfect square. Obviously, $1$ is the least integer having this property. Find the next two least integers having this property.

2014 Contests, 1

Let $(x_{n}) \ n\geq 1$ be a sequence of real numbers with $x_{1}=1$ satisfying $2x_{n+1}=3x_{n}+\sqrt{5x_{n}^{2}-4}$ a) Prove that the sequence consists only of natural numbers. b) Check if there are terms of the sequence divisible by $2011$.

2013 China Second Round Olympiad, 1

Let $n$ be a positive odd integer , $a_1,a_2,\cdots,a_n$ be any permutation of the positive integers $1,2,\cdots,n$ . Prove that :$(a_1-1)(a^2_2-2)(a^3_3-3)\cdots (a^n_n-n)$ is an even number.

2004 Baltic Way, 14

We say that a pile is a set of four or more nuts. Two persons play the following game. They start with one pile of $n \geq 4$ nuts. During a move a player takes one of the piles that they have and split it into two nonempty sets (these sets are not necessarily piles, they can contain arbitrary number of nuts). If the player cannot move, he loses. For which values of $n$ does the first player have a winning strategy?

2014 Middle European Mathematical Olympiad, 4

In Happy City there are $2014$ citizens called $A_1, A_2, \dots , A_{2014}$. Each of them is either [i]happy[/i] or [i]unhappy[/i] at any moment in time. The mood of any citizen $A$ changes (from being unhappy to being happy or vice versa) if and only if some other happy citizen smiles at $A$. On Monday morning there were $N$ happy citizens in the city. The following happened on Monday during the day: the citizen $A_1$ smiled at citizen $A_2$, then $A_2$ smiled at $A_3$, etc., and, finally, $A_{2013}$ smiled at $A_{2014}$. Nobody smiled at anyone else apart from this. Exactly the same repeated on Tuesday, Wednesday and Thursday. There were exactly $2000$ happy citizens on Thursday evening. Determine the largest possible value of $N$.

2008 Bulgaria National Olympiad, 3

Let $n\in\mathbb{N}$ and $0\leq a_1\leq a_2\leq\ldots\leq a_n\leq\pi$ and $b_1,b_2,\ldots ,b_n$ are real numbers for which the following inequality is satisfied : \[\left|\sum_{i\equal{}1}^{n} b_i\cos(ka_i)\right|<\frac{1}{k}\] for all $ k\in\mathbb{N}$. Prove that $ b_1\equal{}b_2\equal{}\ldots \equal{}b_n\equal{}0$.

2008 Iran MO (3rd Round), 5

Find all polynomials $ f\in\mathbb Z[x]$ such that for each $ a,b,x\in\mathbb N$ \[ a\plus{}b\plus{}c|f(a)\plus{}f(b)\plus{}f(c)\]

1998 USAMO, 1

Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1\leq i\leq 999$) so that for all $i$, $|a_i-b_i|$ equals $1$ or $6$. Prove that the sum \[ |a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}| \] ends in the digit $9$.

2013 Moldova Team Selection Test, 1

Let $A=20132013...2013$ be formed by joining $2013$, $165$ times. Prove that $2013^2 \mid A$.

2009 China Team Selection Test, 2

Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.

1998 Baltic Way, 5

Let $a$ be an odd digit and $b$ an even digit. Prove that for every positive integer $n$ there exists a positive integer, divisible by $2^n$, whose decimal representation contains no digits other than $a$ and $b$.

PEN H Problems, 81

Find a pair of relatively prime four digit natural numbers $A$ and $B$ such that for all natural numbers $m$ and $n$, $\vert A^m -B^n \vert \ge 400$.

2010 Kazakhstan National Olympiad, 6

Let numbers $1,2,3,...,2010$ stand in a row at random. Consider row, obtain by next rule: For any number we sum it and it's number in a row (For example for row $( 2,7,4)$ we consider a row $(2+1;7+2;4+3)=(3;9;7)$ ); Proved, that in resulting row we can found two equals numbers, or two numbers, which is differ by $2010$

1985 IberoAmerican, 1

Find all the triples of integers $ (a, b,c)$ such that: \[ \begin{array}{ccc}a\plus{}b\plus{}c &\equal{}& 24\\ a^{2}\plus{}b^{2}\plus{}c^{2}&\equal{}& 210\\ abc &\equal{}& 440\end{array}\]

2008 National Olympiad First Round, 6

A positive integer $n$ is called a good number if every integer multiple of $n$ is divisible by $n$ however its digits are rearranged. How many good numbers are there? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{Infinitely many} $

1980 IMO, 22

Let $p$ be a prime number. Prove that there is no number divisible by $p$ in the $n-th$ row of Pascal's triangle if and only if $n$ can be represented in the form $n = p^sq - 1$, where $s$ and $q$ are integers with $s \geq 0, 0 < q < p$.