This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2003 AMC 10, 25

How many distinct four-digit numbers are divisible by $ 3$ and have $ 23$ as their last two digits? $ \textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 33 \qquad \textbf{(D)}\ 81 \qquad \textbf{(E)}\ 90$

1993 China Team Selection Test, 1

For all primes $p \geq 3,$ define $F(p) = \sum^{\frac{p-1}{2}}_{k=1}k^{120}$ and $f(p) = \frac{1}{2} - \left\{ \frac{F(p)}{p} \right\}$, where $\{x\} = x - [x],$ find the value of $f(p).$

1996 Irish Math Olympiad, 1

For each positive integer $ n$, let $ f(n)$ denote the greatest common divisor of $ n!\plus{}1$ and $ (n\plus{}1)!$. Find, without proof, a formula for $ f(n)$.

2005 MOP Homework, 7

Let $a$, $b$, and $c$ be pairwise distinct positive integers, which are side lengths of a triangle. There is a line which cuts both the area and the perimeter of the triangle into two equal parts. This line cuts the longest side of the triangle into two parts with ratio $2:1$. Determine $a$, $b$, and $c$ for which the product abc is minimal.

2006 Balkan MO, 4

Let $m$ be a positive integer and $\{a_n\}_{n\geq 0}$ be a sequence given by $a_0 = a \in \mathbb N$, and \[ a_{n+1} = \begin{cases} \displaystyle \frac{a_n}2 & \textrm { if } a_n \equiv 0 \pmod 2, \\ a_n + m & \textrm{ otherwise. } \end{cases} \] Find all values of $a$ such that the sequence is periodical (starting from the beginning).

2009 Baltic Way, 8

Determine all positive integers $n$ for which there exists a partition of the set \[\{n,n+1,n+2,\ldots ,n+8\}\] into two subsets such that the product of all elements of the first subset is equal to the product of all elements of the second subset.

1977 IMO Longlists, 12

Let $z$ be an integer $> 1$ and let $M$ be the set of all numbers of the form $z_k = 1+z + \cdots+ z^k, \ k = 0, 1,\ldots$. Determine the set $T$ of divisors of at least one of the numbers $z_k$ from $M.$

2013 India Regional Mathematical Olympiad, 4

Find the number of $10$-tuples $(a_1,a_2,\dots,a_9,a_{10})$ of integers such that $|a_1|\leq 1$ and \[a_1^2+a_2^2+a_3^2+\cdots+a_{10}^2-a_1a_2-a_2a_3-a_3a_4-\cdots-a_9a_{10}-a_{10}a_1=2.\]

2003 Moldova Team Selection Test, 1

Each side of an arbitrarly triangle is divided into $ 2002$ congruent segments. After that, each vertex is joined with all "division" points on the opposite side. Prove that the number of the regions formed, in which the triangle is divided, is divisible by $ 6$. [i]Proposer[/i]: [b]Dorian Croitoru[/b]

2011 ELMO Shortlist, 4

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$. [i]Calvin Deng.[/i]

2015 China Team Selection Test, 3

Let $a,b$ be two integers such that their gcd has at least two prime factors. Let $S = \{ x \mid x \in \mathbb{N}, x \equiv a \pmod b \} $ and call $ y \in S$ irreducible if it cannot be expressed as product of two or more elements of $S$ (not necessarily distinct). Show there exists $t$ such that any element of $S$ can be expressed as product of at most $t$ irreducible elements.

PEN D Problems, 13

Let $\Gamma$ consist of all polynomials in $x$ with integer coefficients. For $f$ and $g$ in $\Gamma$ and $m$ a positive integer, let $f \equiv g \pmod{m}$ mean that every coefficient of $f-g$ is an integral multiple of $m$. Let $n$ and $p$ be positive integers with $p$ prime. Given that $f,g,h,r$ and $s$ are in $\Gamma$ with $rf+sg\equiv 1 \pmod{p}$ and $fg \equiv h \pmod{p}$, prove that there exist $F$ and $G$ in $\Gamma$ with $F \equiv f \pmod{p}$, $G \equiv g \pmod{p}$, and $FG \equiv h \pmod{p^n}$.

2008 International Zhautykov Olympiad, 1

For each positive integer $ n$,denote by $ S(n)$ the sum of all digits in decimal representation of $ n$. Find all positive integers $ n$,such that $ n\equal{}2S(n)^3\plus{}8$.

2014 Online Math Open Problems, 26

Qing initially writes the ordered pair $(1,0)$ on a blackboard. Each minute, if the pair $(a,b)$ is on the board, she erases it and replaces it with one of the pairs $(2a-b,a)$, $(2a+b+2,a)$ or $(a+2b+2,b)$. Eventually, the board reads $(2014,k)$ for some nonnegative integer $k$. How many possible values of $k$ are there? [i]Proposed by Evan Chen[/i]

1988 IMO Longlists, 29

Express the number 1988 as the sum of some positive integers in such a way that the product of these positive integers is maximal.

2010 ELMO Shortlist, 5

Find the set $S$ of primes such that $p \in S$ if and only if there exists an integer $x$ such that $x^{2010} + x^{2009} + \cdots + 1 \equiv p^{2010} \pmod{p^{2011}}$. [i]Brian Hamrick.[/i]

2002 Putnam, 4

An integer $n$, unknown to you, has been randomly chosen in the interval $[1,2002]$ with uniform probability. Your objective is to select $n$ in an ODD number of guess. After each incorrect guess, you are informed whether $n$ is higher or lower, and you $\textbf{must}$ guess an integer on your next turn among the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is greater than $\tfrac{2}{3}$.

1993 IberoAmerican, 3

Two nonnegative integers $a$ and $b$ are [i]tuanis[/i] if the decimal expression of $a+b$ contains only $0$ and $1$ as digits. Let $A$ and $B$ be two infinite sets of non negative integers such that $B$ is the set of all the [i]tuanis[/i] numbers to elements of the set $A$ and $A$ the set of all the [i]tuanis[/i] numbers to elements of the set $B$. Show that in at least one of the sets $A$ and $B$ there is an infinite number of pairs $(x,y)$ such that $x-y=1$.

2012 France Team Selection Test, 3

Let $p$ be a prime number. Find all positive integers $a,b,c\ge 1$ such that: \[a^p+b^p=p^c.\]

1983 IMO Shortlist, 18

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

2013 Bundeswettbewerb Mathematik, 4

Two players $A$ and $B$ play the following game taking alternate moves. In each move, a player writes one digit on the blackboard. Each new digit is written either to the right or left of the sequence of digits already written on the blackboard. Suppose that $A$ begins the game and initially the blackboard was empty. $B$ wins the game if ,after some move of $B$, the sequence of digits written in the blackboard represents a perfect square. Prove that $A$ can prevent $B$ from winning.

2008 Vietnam National Olympiad, 3

Let $ m \equal{} 2007^{2008}$, how many natural numbers n are there such that $ n < m$ and $ n(2n \plus{} 1)(5n \plus{} 2)$ is divisible by $ m$ (which means that $ m \mid n(2n \plus{} 1)(5n \plus{} 2)$) ?

1997 Turkey Team Selection Test, 2

Show that for each prime $p \geq 7$, there exist a positive integer $n$ and integers $x_{i}$, $y_{i}$ $(i = 1, . . . , n)$, not divisible by $p$, such that $x_{i}^{2}+ y_{i}^{2}\equiv x_{i+1}^{2}\pmod{p}$ where $x_{n+1} = x_{1}$

PEN A Problems, 17

Let $m$ and $n$ be natural numbers such that \[A=\frac{(m+3)^{n}+1}{3m}\] is an integer. Prove that $A$ is odd.

2011 Albania Team Selection Test, 5

The sweeties shop called "Olympiad" sells boxes of $6,9$ or $20$ chocolates. Groups of students from a school that is near the shop collect money to buy a chocolate for each student; to make this they buy a box and than give to everybody a chocolate. Like this students can create groups of $15=6+9$ students, $38=2*9+20$ students, etc. The seller has promised to the students that he can satisfy any group of students, and if he will need to open a new box of chocolate for any group (like groups of $4,7$ or $10$ students) than he will give all the chocolates for free to this group. Can there be constructed the biggest group that profits free chocolates, and if so, how many students are there in this group?