Found problems: 2008
2012 Iran Team Selection Test, 1
Find all positive integers $n \geq 2$ such that for all integers $i,j$ that $ 0 \leq i,j\leq n$ , $i+j$ and $ {n\choose i}+ {n \choose j}$ have same parity.
[i]Proposed by Mr.Etesami[/i]
2000 Belarus Team Selection Test, 4.3
Prove that for every real number $M$ there exists an infinite arithmetic progression such that:
- each term is a positive integer and the common difference is not divisible by 10
- the sum of the digits of each term (in decimal representation) exceeds $M$.
1989 AIME Problems, 14
Given a positive integer $n$, it can be shown that every complex number of the form $r+si$, where $r$ and $s$ are integers, can be uniquely expressed in the base $-n+i$ using the integers $1,2,\ldots,n^2$ as digits. That is, the equation\[ r+si=a_m(-n+i)^m+a_{m-1}(-n+i)^{m-1}+\cdots +a_1(-n+i)+a_0 \]is true for a unique choice of non-negative integer $m$ and digits $a_0,a_1,\ldots,a_m$ chosen from the set $\{0,1,2,\ldots,n^2\}$, with $a_m\ne 0$. We write \[ r+si=(a_ma_{m-1}\ldots a_1a_0)_{-n+i} \]to denote the base $-n+i$ expansion of $r+si$. There are only finitely many integers $k+0i$ that have four-digit expansions \[ k=(a_3a_2a_1a_0)_{-3+i}~~~~a_3\ne 0. \]Find the sum of all such $k$.
1985 IMO Shortlist, 13
Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove:
[i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls.
[i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.
2008 JBMO Shortlist, 7
Determine the minimum value of prime $p> 3$ for which there is no natural number $n> 0$ such that $2^n+3^n\equiv 0\pmod{p} $.
2013 China Team Selection Test, 3
Find all positive real numbers $r<1$ such that there exists a set $\mathcal{S}$ with the given properties:
i) For any real number $t$, exactly one of $t, t+r$ and $t+1$ belongs to $\mathcal{S}$;
ii) For any real number $t$, exactly one of $t, t-r$ and $t-1$ belongs to $\mathcal{S}$.
2007 Iran MO (3rd Round), 3
Let $ n$ be a natural number, and $ n \equal{} 2^{2007}k\plus{}1$, such that $ k$ is an odd number. Prove that \[ n\not|2^{n\minus{}1}\plus{}1\]
2015 AIME Problems, 3
Let $m$ be the least positive integer divisible by $17$ whose digits sum to $17$. Find $m$.
2000 IMO Shortlist, 6
Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$
2006 Romania Team Selection Test, 3
For which pairs of positive integers $(m,n)$ there exists a set $A$ such that for all positive integers $x,y$, if $|x-y|=m$, then at least one of the numbers $x,y$ belongs to the set $A$, and if $|x-y|=n$, then at least one of the numbers $x,y$ does not belong to the set $A$?
[i]Adapted by Dan Schwarz from A.M.M.[/i]
2011 NIMO Problems, 8
Define $f(x)$ to be the nearest integer to $x$, with the greater integer chosen if two integers are tied for being the nearest. For example, $f(2.3) = 2$, $f(2.5) = 3$, and $f(2.7) = 3$. Define $[A]$ to be the area of region $A$. Define region $R_n$, for each positive integer $n$, to be the region on the Cartesian plane which satisfies the inequality $f(|x|) + f(|y|) < n$. We pick an arbitrary point $O$ on the perimeter of $R_n$, and mark every two units around the perimeter with another point. Region $S_{nO}$ is defined by connecting these points in order.
[b]a)[/b] Prove that the perimeter of $R_n$ is always congruent to $4 \pmod{8}$.
[b]b)[/b] Prove that $[S_{nO}]$ is constant for any $O$.
[b]c)[/b] Prove that $[R_n] + [S_{nO}] = (2n-1)^2$.
[i]Proposed by Lewis Chen[/i]
2019 Olympic Revenge, 5
Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $$f(n) = \sum \frac{(1+\sum_{i=1}^{n} t_i)!}{(1+t_1) \cdot \prod_{i=1}^{n} (t_i!) }$$
where the sum runs through all $n$-tuples such that $\sum_{j=1}^{n}j \cdot t_j=n$ and $t_j \ge 0$ for all $1 \le j \le n$.
Given a prime $p$ greater than $3$, prove that $$\sum_{1 \le i < j <k \le p-1 } \frac{f(i)}{i \cdot j \cdot k} \equiv \sum_{1 \le i < j <k \le p-1 } \frac{2^i}{i \cdot j \cdot k} \pmod{p}.$$
2017 Iran Team Selection Test, 4
We arranged all the prime numbers in the ascending order: $p_1=2<p_2<p_3<\cdots$.
Also assume that $n_1<n_2<\cdots$ is a sequence of positive integers that for all $i=1,2,3,\cdots$ the equation $x^{n_i} \equiv 2 \pmod {p_i}$ has a solution for $x$.
Is there always a number $x$ that satisfies all the equations?
[i]Proposed by Mahyar Sefidgaran , Yahya Motevasel[/i]
1980 IMO Longlists, 9
Let $p$ be a prime number. Prove that there is no number divisible by $p$ in the $n-th$ row of Pascal's triangle if and only if $n$ can be represented in the form $n = p^sq - 1$, where $s$ and $q$ are integers with $s \geq 0, 0 < q < p$.
2012 India IMO Training Camp, 2
Let $0<x<y<z<p$ be integers where $p$ is a prime. Prove that the following statements are equivalent:
$(a) x^3\equiv y^3\pmod p\text{ and }x^3\equiv z^3\pmod p$
$(b) y^2\equiv zx\pmod p\text{ and }z^2\equiv xy\pmod p$
2000 Belarus Team Selection Test, 7.3
A game is played by $n$ girls ($n \geq 2$), everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, is an arbitrary order, exchange the balls they have at the moment. The game is called nice [b]nice[/b] if at the end nobody has her own ball and it is called [b]tiresome[/b] if at the end everybody has her initial ball. Determine the values of $n$ for which there exists a nice game and those for which there exists a tiresome game.
1989 AIME Problems, 9
One of Euler's conjectures was disproved in then 1960s by three American mathematicians when they showed there was a positive integer $ n$ such that \[133^5 \plus{} 110^5 \plus{} 84^5 \plus{} 27^5 \equal{} n^5.\] Find the value of $ n$.
2006 Bundeswettbewerb Mathematik, 1
A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors).
Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.)
[hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]
2014 Tuymaada Olympiad, 8
Let positive integers $a,\ b,\ c$ be pairwise coprime. Denote by $g(a, b, c)$ the maximum integer not representable in the form $xa+yb+zc$ with positive integral $x,\ y,\ z$. Prove that
\[ g(a, b, c)\ge \sqrt{2abc}\]
[i](M. Ivanov)[/i]
[hide="Remarks (containing spoilers!)"]
1. It can be proven that $g(a,b,c)\ge \sqrt{3abc}$.
2. The constant $3$ is the best possible, as proved by the equation $g(3,3k+1,3k+2)=9k+5$.
[/hide]
2024 India National Olympiad, 3
Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$ are divisible by $p$.
Prove that $p$ divides each of $a,b,c$.
$\quad$
Proposed by Navilarekallu Tejaswi
2008 All-Russian Olympiad, 2
The columns of an $ n\times n$ board are labeled $ 1$ to $ n$. The numbers $ 1,2,...,n$ are arranged in the board so that the numbers in each row and column are pairwise different. We call a cell "good" if the number in it is greater than the label of its column. For which $ n$ is there an arrangement in which each row contains equally many good cells?
2008 Grigore Moisil Intercounty, 2
Determine the natural numbers a, b, c s.t. :
$ \frac{3a+2b}{6a}=\frac{8b+c}{10b}=\frac{3a+2c}{3c} $ and $ a^{2}+b^{2}+c^{2}=975 $
The challenge here is to come up with as basic solution as possible.
PEN B Problems, 7
Suppose that $p>3$ is prime. Prove that the products of the primitive roots of $p$ between $1$ and $p-1$ is congruent to $1$ modulo $p$.
2011 China Team Selection Test, 2
Let $n>1$ be an integer, and let $k$ be the number of distinct prime divisors of $n$. Prove that there exists an integer $a$, $1<a<\frac{n}{k}+1$, such that $n \mid a^2-a$.
2001 India Regional Mathematical Olympiad, 7
Prove that the product of the first $1000$ positive even integers differs from the product of the first $1000$ positive odd integers by a multiple of $2001$.