This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

1996 Romania National Olympiad, 4

Let $f:[0,1) \to \mathbb{R}$ be a monotonic function. Prove that the limits [center]$\lim_{x \nearrow 1} \int_0^x f(t) \mathrm{d}t$ and $\lim_{n \to \infty} \frac{1}{n} \left[ f(0) + f \left(\frac{1}{n}\right) + \ldots + f \left( \frac{n-1}{n} \right) \right]$[/center] exist and are equal.

2010 Laurențiu Panaitopol, Tulcea, 1

Solve in the real numbers the equation $ \arcsin x=\lfloor 2x \rfloor . $ [i]Petre Guțescu[/i]

2023 Romania National Olympiad, 4

Let $f:[0,1] \rightarrow \mathbb{R}$ a non-decreasing function, $f \in C^1,$ for which $f(0) = 0.$ Let $g:[0,1] \rightarrow \mathbb{R}$ a function defined by \[ g(x) = f(x) + (x - 1) f'(x), \forall x \in [0,1]. \] a) Show that \[ \int_{0}^{1} g(x) \text{dx} = 0. \] b) Prove that for all functions $\phi :[0,1] \rightarrow [0,1],$ convex and differentiable with $\phi(0) = 0$ and $\phi(1) = 1,$ the inequality holds \[ \int_{0}^{1} g( \phi(t)) \text{dt} \leq 0. \]

2015 District Olympiad, 3

Find all continuous and nondecreasing functions $ f:[0,\infty)\longrightarrow\mathbb{R} $ that satisfy the inequality: $$ \int_0^{x+y} f(t) dt\le \int_0^x f(t) dt +\int_0^y f(t) dt,\quad\forall x,y\in [0,\infty) . $$

2018 VTRMC, 7

A continuous function $f : [a,b] \to [a,b]$ is called piecewise monotone if $[a, b]$ can be subdivided into finitely many subintervals $$I_1 = [c_0,c_1], I_2 = [c_1,c_2], \dots , I_\ell = [ c_{\ell - 1},c_\ell ]$$ such that $f$ restricted to each interval $I_j$ is strictly monotone, either increasing or decreasing. Here we are assuming that $a = c_0 < c_1 < \cdots < c_{\ell - 1} < c_\ell = b$. We are also assuming that each $I_j$ is a maximal interval on which $f$ is strictly monotone. Such a maximal interval is called a lap of the function $f$, and the number $\ell = \ell (f)$ of distinct laps is called the lap number of $f$. If $f : [a,b] \to [a,b]$ is a continuous piecewise-monotone function, show that the sequence $( \sqrt[n]{\ell (f^n )})$ converges; here $f^n$ means $f$ composed with itself $n$-times, so $f^2 (x) = f(f(x))$ etc.