This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2012 Mid-Michigan MO, 5-6

[b]p1.[/b] A boy has as many sisters as brothers. How ever, his sister has twice as many brothers as sisters. How many boys and girls are there in the family? [b]p2.[/b] Solve each of the following problems. (1) Find a pair of numbers with a sum of $11$ and a product of $24$. (2) Find a pair of numbers with a sum of $40$ and a product of $400$. (3) Find three consecutive numbers with a sum of $333$. (4) Find two consecutive numbers with a product of $182$. [b]p3.[/b] $2008$ integers are written on a piece of paper. It is known that the sum of any $100$ numbers is positive. Show that the sum of all numbers is positive. [b]p4.[/b] Let $p$ and $q$ be prime numbers greater than $3$. Prove that $p^2 - q^2$ is divisible by $24$. [b]p5.[/b] Four villages $A,B,C$, and $D$ are connected by trails as shown on the map. [img]https://cdn.artofproblemsolving.com/attachments/4/9/33ecc416792dacba65930caa61adbae09b8296.png[/img] On each path $A \to B \to C$ and $B \to C \to D$ there are $10$ hills, on the path $A \to B \to D$ there are $22$ hills, on the path $A \to D \to B$ there are $45$ hills. A group of tourists starts from $A$ and wants to reach $D$. They choose the path with the minimal number of hills. What is the best path for them? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Rioplatense Mathematical Olympiad, Level 3, 4

A pair (a,b) of positive integers is [i]Rioplatense [/i]if it is true that $b + k$ is a multiple of $a + k$ for all $k \in\{ 0 , 1 , 2 , 3 , 4 \}$. Prove that there is an infinite set $A$ of positive integers such that for any two elements $a$ and $b$ of $A$, with $a < b$, the pair $(a,b)$ is [i]Rioplatense[/i].

1960 Polish MO Finals, 5

From the digits $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ all possible four-digit numbers with different digits are formed. Find the sum of these numbers.

MOAA Team Rounds, TO3

Consider the addition $\begin{tabular}{cccc} & O & N & E \\ + & T & W & O \\ \hline F & O & U & R \\ \end{tabular}$ where different letters represent different nonzero digits. What is the smallest possible value of the four-digit number $FOUR$?

2019 ELMO Shortlist, N3

Let $S$ be a nonempty set of positive integers such that, for any (not necessarily distinct) integers $a$ and $b$ in $S$, the number $ab+1$ is also in $S$. Show that the set of primes that do not divide any element of $S$ is finite. [i]Proposed by Carl Schildkraut[/i]

1984 Bulgaria National Olympiad, Problem 1

Solve the equation $5^x7^y+4=3^z$ in nonnegative integers.

2014 AIME Problems, 6

The graphs of $y=3(x-h)^2+j$ and $y=2(x-h)^2+k$ have $y$-intercepts of $2013$ and $2014$, respectively, and each graph has two positive integer $x$-intercepts. Find $h$.

2024 Romania Team Selection Tests, P3

Let $n{}$ be a positive integer and let $a{}$ and $b{}$ be positive integers congruent to 1 modulo 4. Prove that there exists a positive integer $k{}$ such that at least one of the numbers $a^k-b$ and $b^k-a$ is divisible by $2^n.$ [i]Cătălin Liviu Gherghe[/i]

2023 LMT Fall, 7

How many $2$-digit factors does $555555$ have?

2005 Swedish Mathematical Competition, 1

Find all integer solutions $x$,$y$ of the equation $(x+y^2)(x^2+y)=(x+y)^3$.

2004 Regional Olympiad - Republic of Srpska, 3

An $8\times8$ chessboard is completely tiled by $2\times1$ dominoes. Prove that we can place positive integers in all cells of the table in such a way that the sums of numbers in every domino are equal and the numbers placed in two adjacent cells are coprime if and only if they belong to the same domino. (Two cells are called adjacent if they have a common side.) Well this can belong to number theory as well...

2025 Kosovo EGMO Team Selection Test, P2

Find all natural numbers $m$ and $n$ such that $3^m+n!-1$ is the square of a natural number.

1995 Cono Sur Olympiad, 3

Let $n$ be a natural number and $f(n) = 2n - 1995 \lfloor \frac{n}{1000} \rfloor$($\lfloor$ $\rfloor$ denotes the floor function). 1. Show that if for some integer $r$: $f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times), then $n$ is multiple of $1995$. 2. Show that if $n$ is multiple of 1995, then there exists r such that:$f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times). Determine $r$ if $n=1995.500=997500$

2019 China Northern MO, 8

For positive intenger $n$, define $f(n)$: the smallest positive intenger that does not divide $n$. Consider sequence $(a_n): a_1=a_2=1, a_n=a_{f(n)}+1(n\geq3)$. For example, $a_3=a_2+1=2,a_4=a_3+1=3$. [b](a)[/b] Prove that there exists a positive intenger $C$, for any positive intenger $n$, $a_n\leq C$. [b](b)[/b] Are there positive intengers $M$ and $T$, satisfying that for any positive intenger $n\geq M$, $a_n=a_{n+T}$.

2019 BMT Spring, 2

Find the remainder when $2^{2019}$ is divided by $7$.

2004 All-Russian Olympiad Regional Round, 10.6

A set of five-digit numbers $\{N_1, ...,N_k\}$ is such that any five-digit number, all of whose digits are in non-decreasing order, coincides in at least one digit with at least one of the numbers $N_1$, $...$ , $N_k$. Find the smallest possible value of $k$.

2022 Dutch Mathematical Olympiad, 3

Given a positive integer $c$, we construct a sequence of fractions $a_1, a_2, a_3,...$ as follows: $\bullet$ $a_1 =\frac{c}{c+1} $ $\bullet$ to get $a_n$, we take $a_{n-1}$ (in its most simplified form, with both the numerator and denominator chosen to be positive) and we add $2$ to the numerator and $3$ to the denominator. Then we simplify the result again as much as possible, with positive numerator and denominator. For example, if we take $c = 20$, then $a_1 =\frac{20}{21}$ and $a_2 =\frac{22}{24} = \frac{11}{12}$ . Then we find that $a_3 =\frac{13}{15}$ (which is already simplified) and $a_4 =\frac{15}{18} =\frac{5}{6}$. (a) Let $c = 10$, hence $a_1 =\frac{10}{11}$ . Determine the largest $n$ for which a simplification is needed in the construction of $a_n$. (b) Let $c = 99$, hence $a_1 =\frac{99}{100}$ . Determine whether a simplification is needed somewhere in the sequence. (c) Find two values of $c$ for which in the first step of the construction of $a_5$ (before simplification) the numerator and denominator are divisible by $5$.

1996 Spain Mathematical Olympiad, 1

The natural numbers $a$ and $b$ are such that $ \frac{a+1}{b}+ \frac{b+1}{a}$ is an integer. Show that the greatest common divisor of a and b is not greater than $\sqrt{a+b}$.

2021-IMOC qualification, N0

Compute the remainder of $3^{2021}$ mod $15$

2010 Baltic Way, 16

For a positive integer $k$, let $d(k)$ denote the number of divisors of $k$ and let $s(k)$ denote the digit sum of $k$. A positive integer $n$ is said to be [i]amusing[/i] if there exists a positive integer $k$ such that $d(k)=s(k)=n$. What is the smallest amusing odd integer greater than $1$?

2010 Thailand Mathematical Olympiad, 10

Find all primes $p$ such that ${100 \choose p} + 7$ is divisible by $p$.

2007 Purple Comet Problems, 2

A positive number $\dfrac{m}{n}$ has the property that it is equal to the ratio of $7$ plus the number’s reciprocal and $65$ minus the number’s reciprocal. Given that $m$ and $n$ are relatively prime positive integers, find $2m + n$.

2010 Canadian Mathematical Olympiad Qualification Repechage, 5

The Fibonacci sequence is de ned by $f_1=f_2=1$ and $f_n=f_{n-1}+f_{n-2}$ for $n\ge 3$. A Pythagorean triangle is a right-angled triangle with integer side lengths. Prove that $f_{2k+1}$ is the hypotenuse of a Pythagorean triangle for every positive integer $k$ with $k\ge 2$

2025 Kyiv City MO Round 2, Problem 2

Find all pairs of positive integers \( a, b \) such that one of the two numbers \( 2(a^2 + b^2) \) and \( (a + b)^2 + 4 \) is divisible by the other. [i]Proposed by Oleksii Masalitin[/i]

1995 Portugal MO, 1

Joao Salta-Pocinhas jumps $1$ meter in the first jump, $2$ meters in the second, $4$ meters in the third, . . ., $2^{n-1}$ meters in jump number $n$. Is there any possibility for Joao to choose the directions of his jumps in order to get back to the starting point?