Found problems: 15460
2013 ITAMO, 4
$\overline{5654}_b$ is a power of a prime number. Find $b$ if $b > 6$.
1984 IMO Shortlist, 10
Prove that the product of five consecutive positive integers cannot be the square of an integer.
2001 Turkey Team Selection Test, 1
Find all ordered pairs of integers $(x,y)$ such that $5^x = 1 + 4y + y^4$.
2022 HMNT, 3
Alice is bored in class, so she thinks of a positive integer. Every second after that, she subtracts from her current number its smallest prime divisor, possibly itself. After 2022 seconds, she realizes that her number is prime. Find the sum of all possible values of her initial number.
2014 Contests, 2
Let $n$ be a natural number. Prove that,
\[ \left\lfloor \frac{n}{1} \right\rfloor+ \left\lfloor \frac{n}{2} \right\rfloor + \cdots + \left\lfloor \frac{n}{n} \right\rfloor + \left\lfloor \sqrt{n} \right\rfloor \]
is even.
1999 Switzerland Team Selection Test, 6
Prove that if $m$ and $n$ are positive integers such that $m^2 + n^2 - m$ is divisible by $2mn$, then $m$ is a perfect square.
2022 Junior Balkan Team Selection Tests - Moldova, 11
Find all ordered pairs of positive integers $(m, n)$ such that $2m$ divides the number $3n - 2$, and $2n$ divides the number $3m - 2$.
1982 Tournament Of Towns, (025) 3
Prove that the equation $m!n! = k!$ has infinitely many solutions in which $m, n$ and $k$ are natural numbers greater than unity .
2020 BMT Fall, 10
How many integers $100 \le x \le 999$ have the property that, among the six digits in $\lfloor 280 + \frac{x}{100} \rfloor$ and $x$, exactly two are identical?
2021 Brazil EGMO TST, 5
Let $S$ be a set, such that for every positive integer $n$, we have $|S\cap T|=1$, where $T=\{n,2n,3n\}$. Prove that if $2\in S$, then $13824\notin S$.
1991 Romania Team Selection Test, 1
Suppose that $ a,b$ are positive integers for which $ A\equal{}\frac{a\plus{}1}{b}\plus{}\frac{b}{a}$ is an integer.Prove that $ A\equal{}3$.
2015 Singapore Junior Math Olympiad, 5
Find all positive integers $k$ such that $k^k +1$ is divisible by $30$. Justify your answer.
2021 Romania Team Selection Test, 2
For any positive integer $n>1$, let $p(n)$ be the greatest prime factor of $n$. Find all the triplets of distinct positive integers $(x,y,z)$ which satisfy the following properties: $x,y$ and $z$ form an arithmetic progression, and $p(xyz)\leq 3.$
2024 Malaysian IMO Team Selection Test, 5
Let $n$ be an odd integer and $m=\phi(n)$ be the Euler's totient function. Call a set of residues $T=\{a_1, \cdots, a_k\} \pmod n$ to be [i]good[/i] if $\gcd(a_i, n) > 1$ $\forall i$, and $\gcd(a_i, a_j) = 1, \forall i \neq j$. Define the set $S_n$ consisting of the residues $$\sum_{i=1}^k a_i ^m\pmod{n}$$ over all possible residue sets $T=\{a_1,\cdots,a_k\}$ that is good. Determine $|S_n|$.
[i]Proposed by Anzo Teh Zhao Yang[/i]
Math Hour Olympiad, Grades 5-7, 2012.57
[u]Round 1[/u]
[b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed?
[b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.)
This is the shape of the throne room:
[img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img]
Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit.
[img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img]
[b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests.
One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table."
"But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor.
Now Pooh can tell how many knights are at the table. Can you?
[b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$.
[b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins?
[u]Round 2[/u]
[b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.)
[b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third?
[img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Belarusian National Olympiad, 11.4
Find all triples $(a,b,k)$, $k \geq 2$, of positive integers such that $(a^k+b)(b^k+a)$ is a power of two.
2018 Junior Balkan Team Selection Tests - Romania, 1
Determine the prime numbers $p$ for which the number $a = 7^p - p - 16$ is a perfect square.
Lucian Petrescu
2012 HMNT, 7
Find the number of ordered $2012$-tuples of integers $(x_1, x_2, . . . , x_{2012})$, with each integer between $0$ and $2011$ inclusive, such that the sum $x_1 + 2x_2 + 3x_3 + · · · + 2012x_{2012}$ is divisible by $2012$.
2017 India IMO Training Camp, 3
Prove that for any positive integers $a$ and $b$ we have $$a+(-1)^b \sum^a_{m=0} (-1)^{\lfloor{\frac{bm}{a}\rfloor}} \equiv b+(-1)^a \sum^b_{n=0} (-1)^{\lfloor{\frac{an}{b}\rfloor}} \pmod{4}.$$
2000 Iran MO (3rd Round), 2
Find all f:N $\longrightarrow$ N that:
[list][b]a)[/b] $f(m)=1 \Longleftrightarrow m=1 $
[b]b)[/b] $d=gcd(m,n) f(m\cdot n)= \frac{f(m)\cdot f(n)}{f(d)} $
[b]c)[/b] $ f^{2000}(m)=f(m) $[/list]
2015 NIMO Summer Contest, 14
We say that an integer $a$ is a quadratic, cubic, or quintic residue modulo $n$ if there exists an integer $x$ such that $x^2\equiv a \pmod n$, $x^3 \equiv a \pmod n$, or $x^5 \equiv a \pmod n$, respectively. Further, an integer $a$ is a primitive residue modulo $n$ if it is exactly one of these three types of residues modulo $n$.
How many integers $1 \le a \le 2015$ are primitive residues modulo $2015$?
[i] Proposed by Michael Ren [/i]
2012 ELMO Shortlist, 9
For a set $A$ of integers, define $f(A)=\{x^2+xy+y^2: x,y\in A\}$. Is there a constant $c$ such that for all positive integers $n$, there exists a set $A$ of size $n$ such that $|f(A)|\le cn$?
[i]David Yang.[/i]
1982 Spain Mathematical Olympiad, 1
On the puzzle page of a newspaper this problem is proposed:
“Two children, Antonio and José, have $160$ comics. Antonio counts his by $7$ by $7$ and there are $4$ left over. José counts his $ 8$ by $8$ and he also has $4$ left over. How many comics does he have each?" In the next issue of the newspaper this solution is given: “Antonio has $60$ comics and José has $100$.”
Analyze this solution and indicate what a mathematician would do with this problem.
2022 CMIMC, 2.7
For polynomials $P(x) = a_nx^n + \cdots + a_0$, let $f(P) = a_n\cdots a_0$ be the product of the coefficients of $P$. The polynomials $P_1,P_2,P_3,Q$ satisfy $P_1(x) = (x-a)(x-b)$, $P_2(x) = (x-a)(x-c)$, $P_3(x) = (x-b)(x-c)$, $Q(x) = (x-a)(x-b)(x-c)$ for some complex numbers $a,b,c$. Given $f(Q) = 8$, $f(P_1) + f(P_2) + f(P_3) = 10$, and $abc>0$, find the value of $f(P_1)f(P_2)f(P_3)$.
[i]Proposed by Justin Hsieh[/i]
1966 IMO Longlists, 29
A given natural number $N$ is being decomposed in a sum of some consecutive integers.
[b]a.)[/b] Find all such decompositions for $N=500.$
[b]b.)[/b] How many such decompositions does the number $N=2^{\alpha }3^{\beta }5^{\gamma }$ (where $\alpha ,$ $\beta $ and $\gamma $ are natural numbers) have? Which of these decompositions contain natural summands only?
[b]c.)[/b] Determine the number of such decompositions (= decompositions in a sum of consecutive integers; these integers are not necessarily natural) for an arbitrary natural $N.$
[b]Note by Darij:[/b] The $0$ is not considered as a natural number.