This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Hanoi Open Mathematics Competitions, 9

Let rational numbers $a, b, c$ satisfy the conditions $a + b + c = a^2 + b^2 + c^2 \in Z$. Prove that there exist two relative prime numbers $m, n$ such that $abc =\frac{m^2}{n^3}$ .

2022 Saudi Arabia BMO + EGMO TST, 2.1

Define $a_0 = 2$ and $a_{n+1} = a^2_n + a_n -1$ for $n \ge 0$. Prove that $a_n$ is coprime to $2n + 1$ for all $n \in N$.

2013 Online Math Open Problems, 42

Find the remainder when \[\prod_{i=0}^{100}(1-i^2+i^4)\] is divided by $101$. [i]Victor Wang[/i]

2014 IFYM, Sozopol, 5

Let $f(x)$ be a polynomial with integer coefficients, for which there exist $a,b\in \mathbb{Z}$ ($a\neq b$), such that $f(a)$ and $f(b)$ are coprime. Prove that there exist infinitely many values for $x$, such that each $f(x)$ is coprime with any other.

2012 LMT, Individual

[b]p1[/b]. Evaluate $1! + 2! + 3! + 4! + 5! $ (where $n!$ is the product of all integers from $1$ to $n$, inclusive). [b]p2.[/b] Harold opens a pack of Bertie Bott's Every Flavor Beans that contains $10$ blueberry, $10$ watermelon, $3$ spinach and $2$ earwax-flavored jelly beans. If he picks a jelly bean at random, then what is the probability that it is not spinach-flavored? [b]p3.[/b] Find the sum of the positive factors of $32$ (including $32$ itself). [b]p4.[/b] Carol stands at a flag pole that is $21$ feet tall. She begins to walk in the direction of the flag's shadow to say hi to her friends. When she has walked $10$ feet, her shadow passes the flag's shadow. Given that Carol is exactly $5$ feet tall, how long in feet is her shadow? [b]p5.[/b] A solid metal sphere of radius $7$ cm is melted and reshaped into four solid metal spheres with radii $1$, $5$, $6$, and $x$ cm. What is the value of $x$? [b]p6.[/b] Let $A = (2,-2)$ and $B = (-3, 3)$. If $(a,0)$ and $(0, b)$ are both equidistant from $A$ and $B$, then what is the value of $a + b$? [b]p7.[/b] For every flip, there is an $x^2$ percent chance of flipping heads, where $x$ is the number of flips that have already been made. What is the probability that my first three flips will all come up tails? [b]p8.[/b] Consider the sequence of letters $Z\,\,W\,\,Y\,\,X\,\,V$. There are two ways to modify the sequence: we can either swap two adjacent letters or reverse the entire sequence. What is the least number of these changes we need to make in order to put the letters in alphabetical order? [b]p9.[/b] A square and a rectangle overlap each other such that the area inside the square but outside the rectangle is equal to the area inside the rectangle but outside the square. If the area of the rectangle is $169$, then find the side length of the square. [b]p10.[/b] If $A = 50\sqrt3$, $B = 60\sqrt2$, and $C = 85$, then order $A$, $B$, and $C$ from least to greatest. [b]p11.[/b] How many ways are there to arrange the letters of the word $RACECAR$? (Identical letters are assumed to be indistinguishable.) [b]p12.[/b] A cube and a regular tetrahedron (which has four faces composed of equilateral triangles) have the same surface area. Let $r$ be the ratio of the edge length of the cube to the edge length of the tetrahedron. Find $r^2$. [b]p13.[/b] Given that $x^2 + x + \frac{1}{x} +\frac{1}{x^2} = 10$, find all possible values of $x +\frac{1}{x}$ . [b]p14.[/b] Astronaut Bob has a rope one unit long. He must attach one end to his spacesuit and one end to his stationary spacecraft, which assumes the shape of a box with dimensions $3\times 2\times 2$. If he can attach and re-attach the rope onto any point on the surface of his spacecraft, then what is the total volume of space outside of the spacecraft that Bob can reach? Assume that Bob's size is negligible. [b]p15.[/b] Triangle $ABC$ has $AB = 4$, $BC = 3$, and $AC = 5$. Point $B$ is reflected across $\overline{AC}$ to point $B'$. The lines that contain $AB'$ and $BC$ are then drawn to intersect at point $D$. Find $AD$. [b]p16.[/b] Consider a rectangle $ABCD$ with side lengths $5$ and $12$. If a circle tangent to all sides of $\vartriangle ABD$ and a circle tangent to all sides of $\vartriangle BCD$ are drawn, then how far apart are the centers of the circles? [b]p17.[/b] An increasing geometric sequence $a_0, a_1, a_2,...$ has a positive common ratio. Also, the value of $a_3 + a_2 - a_1 - a_0$ is equal to half the value of $a_4 - a_0$. What is the value of the common ratio? [b]p18.[/b] In triangle $ABC$, $AB = 9$, $BC = 11$, and $AC = 16$. Points $E$ and $F$ are on $\overline{AB}$ and $\overline{BC}$, respectively, such that $BE = BF = 4$. What is the area of triangle $CEF$? [b]p19.[/b] Xavier, Yuna, and Zach are running around a circular track. The three start at one point and run clockwise, each at a constant speed. After $8$ minutes, Zach passes Xavier for the first time. Xavier first passes Yuna for the first time in $12$ minutes. After how many seconds since the three began running did Zach first pass Yuna? [b]p20.[/b] How many unit fractions are there such that their decimal equivalent has a cycle of $6$ repeating integers? Exclude fractions that repeat in cycles of $1$, $2$, or $3$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1982 IMO Longlists, 15

Show that the set $S$ of natural numbers $n$ for which $\frac{3}{n}$ cannot be written as the sum of two reciprocals of natural numbers ($S =\left\{n |\frac{3}{n} \neq \frac{1}{p} + \frac{1}{q} \text{ for any } p, q \in \mathbb N \right\}$) is not the union of finitely many arithmetic progressions.

2018 Saudi Arabia JBMO TST, 1

Let $n$ be a natural composite number. For each proper divisor $d$ of $n$ we write the number $d + 1$ on the board. Determine all natural numbers $n$ for which the numbers written on the board are all the proper divisors of a natural number $m$. (The proper divisors of a natural number $a> 1$ are the positive divisors of $a$ different from $1$ and $a$.)

2011 QEDMO 9th, 6

Show that there are infinitely many pairs $(m, n)$ of natural numbers $m, n \ge 2$, for $m^m- 1$ is divisible by $n$ and $n^n- 1$ is divisible by $m$.

2019 Thailand Mathematical Olympiad, 10

Prove that there are infinitely many positive odd integer $n$ such that $n!+1$ is composite number.

1998 USAMTS Problems, 1

Several pairs of positive integers $(m ,n )$ satisfy the condition $19m + 90 + 8n = 1998$. Of these, $(100, 1 )$ is the pair with the smallest value for $n$. Find the pair with the smallest value for $m$.

2019 India PRMO, 5

Let $N$ be the smallest positive integer such that $N+2N+3N+\ldots +9N$ is a number all of whose digits are equal. What is the sum of digits of $N$?

2012 Romania National Olympiad, 4

For any non-empty numerical numbers $A$ and $B$, denote $$A + B = \{a + b | a \in A, b \in B\} $$ a) Determine the largest natural number not $p$ with the property: [i] there exists[/i] $A,B \subset N$ [i]such that[/i] $card \, A = card\, B = p$ [i]and [/i] $A+B = \{0, 1, 2,..., 2012\}$ b) Determine the smallest natural number $n$ with the property: [i] there exists[/i] $A,B \subset N$ [i]such that[/i] $card \, A = card\, B $ [i]and [/i] $A+B =\{0, 1, 2,..., 2012\}$

1913 Eotvos Mathematical Competition, 1

Prove that for every integer $n > 2$, $$(1\cdot 2 \cdot 3 \cdot ... \cdot n)^2 > n^n.$$

2013 Online Math Open Problems, 19

$A,B,C$ are points in the plane such that $\angle ABC=90^\circ$. Circles with diameters $BA$ and $BC$ meet at $D$. If $BA=20$ and $BC=21$, then the length of segment $BD$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]Ray Li[/i]

2021 Kyiv City MO Round 1, 9.2

Roma wrote on the board each of the numbers $2018, 2019, 2020$, $100$ times each. Let us denote by $S(n)$ the sum of digits of positive integer $n$. In one action, Roma can choose any positive integer $k$ and instead of any three numbers $a, b, c$ written on the board write the numbers $2S(a + b) + k, 2S(b + c) + k$ and $2S(c + a) + k$. Can Roma after several such actions make $299$ numbers on the board equal, and the last one differing from them by $1$? [i]Proposed by Oleksii Masalitin[/i]

2022 Balkan MO, 2

Let $a, b$ and $n$ be positive integers with $a>b$ such that all of the following hold: i. $a^{2021}$ divides $n$, ii. $b^{2021}$ divides $n$, iii. 2022 divides $a-b$. Prove that there is a subset $T$ of the set of positive divisors of the number $n$ such that the sum of the elements of $T$ is divisible by 2022 but not divisible by $2022^2$. [i]Proposed by Silouanos Brazitikos, Greece[/i]

MBMT Guts Rounds, 2018

[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide] [u] Set 4[/u] [b]C.16 / G.6[/b] Let $a, b$, and $c$ be real numbers. If $a^3 + b^3 + c^3 = 64$ and $a + b = 0$, what is the value of $c$? [b]C.17 / G.8[/b] Bender always turns $60$ degrees clockwise. He walks $3$ meters, turns, walks $2$ meters, turns, walks $1$ meter, turns, walks $4$ meters, turns, walks $1$ meter, and turns. How many meters does Bender have to walk to get back to his original position? [b]C.18 / G.13[/b] Guang has $4$ identical packs of gummies, and each pack has a red, a blue, and a green gummy. He eats all the gummies so that he finishes one pack before going on to the next pack, but he never eats two gummies of the same color in a row. How many different ways can Guang eat the gummies? [b]C.19[/b] Find the sum of all digits $q$ such that there exists a perfect square that ends in $q$. [b]C.20 / G.14[/b] The numbers $5$ and $7$ are written on a whiteboard. Every minute Stev replaces the two numbers on the board with their sum and difference. After $2017$ minutes the product of the numbers on the board is $m$. Find the number of factors of $m$. [u]Set 5[/u] [b]C.21 / G.10[/b] On the planet Alletas, $\frac{32}{33}$ of the people with silver hair have purple eyes and $\frac{8}{11}$ of the people with purple eyes have silver hair. On Alletas, what is the ratio of the number of people with purple eyes to the number of people with silver hair? [b]C.22 / G.15[/b] Let $P$ be a point on $y = -1$. Let the clockwise rotation of $P$ by $60^o$ about $(0, 0)$ be $P'$. Find the minimum possible distance between $P'$ and $(0, -1)$. [b]C.23 / G.18[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct. [b]C.24[/b] Jeremy and Kevin are arguing about how cool a sweater is on a scale of $1-5$. Jeremy says “$3$”, and Kevin says “$4$”. Jeremy angrily responds “$3.5$”, to which Kevin replies “$3.75$”. The two keep going at it, responding with the average of the previous two ratings. What rating will they converge to (and settle on as the coolness of the sweater)? [b]C.25 / G.20[/b] An even positive integer $n$ has an [i]odd factorization[/i] if the largest odd divisor of $n$ is also the smallest odd divisor of $n$ greater than $1$. Compute the number of even integers $n$ less than $50$ with an odd factorization. [u]Set 6[/u] [b]C.26 / G.26[/b] When $2018! = 2018 \times 2017 \times ... \times 1$ is multiplied out and written as an integer, find the number of $4$’s. If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \, (A/E, E/A)^3$points. [b]C.27 / G.27[/b] A circle of radius $10$ is cut into three pieces of equal area with two parallel cuts. Find the width of the center piece. [img]https://cdn.artofproblemsolving.com/attachments/e/2/e0ab4a2d51052ee364dd14336677b053a40352.png[/img] If the correct answer is $A$ and your answer is $E$, you will receive $\max \, \,(0, 12 - 6|A - E|)$points. [b]C.28 / G.28[/b] An equilateral triangle of side length $1$ is randomly thrown onto an infinite set of lines, spaced $1$ apart. On average, how many times will the boundary of the triangle intersect one of the lines? [img]https://cdn.artofproblemsolving.com/attachments/0/1/773c3d3e0dfc1df54945824e822feaa9c07eb7.png[/img] For example, in the above diagram, the boundary of the triangle intersects the lines in $2$ places. If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12-120|A-E|/A)$ points. [b]C.29 / G.29[/b] Call an ordered triple of integers $(a, b, c)$ nice if there exists an integer $x$ such that $ax^2 + bx + c = 0$. How many nice triples are there such that $-100 \le a, b, c \le 100$? If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \,(A/E, E/A)$ points. [b]C.30 / G.30[/b] Let $f(i)$ denote the number of MBMT volunteers to be born in the $i$th state to join the United States. Find the value of $1f(1) + 2f(2) + 3f(3) + ... + 50f(50)$. Note 1: Maryland was the $7$th state to join the US. Note 2: Last year’s MBMT competition had $42$ volunteers. If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12 - 500(|A -E|/A)^2)$ points. PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and G16-25 [url=https://artofproblemsolving.com/community/c3h2790679p24540159]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 Mongolian Mathematical Olympiad, Problem 4

If $x,y,z\in\mathbb N$ and $xy=z^2+1$ prove that there exists integers $a,b,c,d$ such that $x=a^2+b^2$, $y=c^2+d^2$, $z=ac+bd$.

1994 Hungary-Israel Binational, 1

Let $ m$ and $ n$ be two distinct positive integers. Prove that there exists a real number $ x$ such that $ \frac {1}{3}\le\{xn\}\le\frac {2}{3}$ and $ \frac {1}{3}\le\{xm\}\le\frac {2}{3}$. Here, for any real number $ y$, $ \{y\}$ denotes the fractional part of $ y$. For example $ \{3.1415\} \equal{} 0.1415$.

2022 Balkan MO Shortlist, N1

Let $n{}$ be a positive integer. What is the smallest sum of digits that $5^n + 6^n + 2022^n$ can take?

2022 Kosovo National Mathematical Olympiad, 4

Find all prime numbers $p$ and $q$ such that $pq-p-q+3$ is a perfect square.

2004 Bulgaria National Olympiad, 2

For any positive integer $n$ the sum $\displaystyle 1+\frac 12+ \cdots + \frac 1n$ is written in the form $\displaystyle \frac{P(n)}{Q(n)}$, where $P(n)$ and $Q(n)$ are relatively prime. a) Prove that $P(67)$ is not divisible by 3; b) Find all possible $n$, for which $P(n)$ is divisible by 3.

2003 IMO Shortlist, 4

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

1968 IMO Shortlist, 15

Let $n$ be a natural number. Prove that \[ \left\lfloor \frac{n+2^0}{2^1} \right\rfloor + \left\lfloor \frac{n+2^1}{2^2} \right\rfloor +\cdots +\left\lfloor \frac{n+2^{n-1}}{2^n}\right\rfloor =n. \] [hide="Remark"]For any real number $x$, the number $\lfloor x \rfloor$ represents the largest integer smaller or equal with $x$.[/hide]

2008 Romanian Master of Mathematics, 3

Let $ a>1$ be a positive integer. Prove that every non-zero positive integer $ N$ has a multiple in the sequence $ (a_n)_{n\ge1}$, $ a_n\equal{}\left\lfloor\frac{a^n}n\right\rfloor$.