This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2000 USA Team Selection Test, 5

Let $n$ be a positive integer. A $corner$ is a finite set $S$ of ordered $n$-tuples of positive integers such that if $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ are positive integers with $a_k \geq b_k$ for $k = 1, 2, \ldots, n$ and $(a_1, a_2, \ldots, a_n) \in S$, then $(b_1, b_2, \ldots, b_n) \in S$. Prove that among any infinite collection of corners, there exist two corners, one of which is a subset of the other one.

2001 Moldova National Olympiad, Problem 7

Tags: set , number theory
Let $n$ be a positive integer. We denote by $S$ the sum of elements of the set $M=\{x\in\mathbb N|(n-1)^2\le x<(n+1)^2\}$. (a) Show that $S$ is divisible by $6$. (b) Find all $n\in\mathbb N$ for which $S+(1-n)(1+n)=2001$.

PEN H Problems, 26

Solve in integers the following equation \[n^{2002}=m(m+n)(m+2n)\cdots(m+2001n).\]

2016 CMIMC, 3

Let $\{x\}$ denote the fractional part of $x$. For example, $\{5.5\}=0.5$. Find the smallest prime $p$ such that the inequality \[\sum_{n=1}^{p^2}\left\{\dfrac{n^p}{p^2}\right\}>2016\] holds.

2008 Cono Sur Olympiad, 1

We define $I(n)$ as the result when the digits of $n$ are reversed. For example, $I(123)=321$, $I(2008)=8002$. Find all integers $n$, $1\leq{n}\leq10000$ for which $I(n)=\lceil{\frac{n}{2}}\rceil$. Note: $\lceil{x}\rceil$ denotes the smallest integer greater than or equal to $x$. For example, $\lceil{2.1}\rceil=3$, $\lceil{3.9}\rceil=4$, $\lceil{7}\rceil=7$.

2021 ABMC., Accuracy

[b]p1.[/b] There is a string of numbers $1234567891023...910134 ...91012...$ that concatenates the numbers $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, then $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, then $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, $2$, and so on. After $10$, $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, the string will be concatenated with $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$ again. What is the $2021$st digit? [b]p2.[/b] Bob really likes eating rice. Bob starts eating at the rate of $1$ bowl of rice per minute. Every minute, the number of bowls of rice Bob eats per minute increases by $1$. Given there are $78$ bowls of rice, find number of minutes Bob needs to finish all the rice. [b]p3.[/b] Suppose John has $4$ fair coins, one red, one blue, one yellow, one green. If John flips all $4$ coins at once, the probability he will land exactly $3$ heads and land heads on both the blue and red coins can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p4.[/b] Three of the sides of an isosceles trapezoid have lengths $1$, $10$, $20$ Find the sum of all possible values of the fourth side. [b]p5.[/b] An number two-three-delightful if and only if it can be expressed as the product of $2$ consecutive integers larger than $1$ and as the product of $3$ consecutive integers larger than $1$. What is the smallest two-three-delightful number? [b]p6.[/b] There are $3$ students total in Justin's online chemistry class. On a $100$ point test, Justin's two classmates scored $4$ and $7$ points. The teacher notices that the class median score is equal to $gcd(x, 42)$, where the positive integer $x$ is Justin's score. Find the sum of all possible values of Justin's score. [b]p7.[/b] Eddie's gym class of $10$ students decides to play ping pong. However, there are only $4$ tables and only $2$ people can play at a table. If $8$ students are randomly selected to play and randomly assigned a partner to play against at a table, the probability that Eddie plays against Allen is $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p8.[/b] Let $S$ be the set of integers $k$ consisting of nonzero digits, such that $300 < k < 400$ and $k - 300$ is not divisible by $11$. For each $k$ in $S$, let $A(k)$ denote the set of integers in $S$ not equal to $k$ that can be formed by permuting the digits of $k$. Find the number of integers $k$ in $S$ such that $k$ is relatively prime to all elements of $A(k)$. [b]p9.[/b] In $\vartriangle ABC$, $AB = 6$ and $BC = 5$. Point $D$ is on side $AC$ such that $BD$ bisects angle $\angle ABC$. Let $E$ be the foot of the altitude from $D$ to $AB$. Given $BE = 4$, find $AC^2$. [b]p10.[/b] For each integer $1 \le n \le 10$, Abe writes the number $2^n + 1$ on a blackboard. Each minute, he takes two numbers $a$ and $b$, erases them, and writes $\frac{ab-1}{a+b-2}$ instead. After $9$ minutes, there is one number $C$ left on the board. The minimum possible value of $C$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. [b]p11.[/b] Estimation (Tiebreaker) Let $A$ and $B$ be the proportions of contestants that correctly answered Questions $9$ and $10$ of this round, respectively. Estimate $\left \lfloor \dfrac{1}{(AB)^2} \right \rfloor$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Turkey MO (2nd round), 1

Find all positive integers $x$ and $n$ such that ${{x}^{3}}+3367={{2}^{n}}$.

1999 Switzerland Team Selection Test, 9

Suppose that $P(x)$ is a polynomial with degree $10$ and integer coefficients. Prove that, there is an infinite arithmetic progression (open to bothside) not contain value of $P(k)$ with $k\in\mathbb{Z}$

2003 Junior Macedonian Mathematical Olympiad, Problem 1

Show that for every positive integer $n$ the number $7^n-1$ is not divisible by $6^n-1$.

2018 Iran Team Selection Test, 5

Prove that for each positive integer $m$, one can find $m$ consecutive positive integers like $n$ such that the following phrase doesn't be a perfect power: $$\left(1^3+2018^3\right)\left(2^3+2018^3\right)\cdots \left(n^3+2018^3\right)$$ [i]Proposed by Navid Safaei[/i]

1967 IMO Shortlist, 4

Prove the following statement: If $r_1$ and $r_2$ are real numbers whose quotient is irrational, then any real number $x$ can be approximated arbitrarily well by the numbers of the form $\ z_{k_1,k_2} = k_1r_1 + k_2r_2$ integers, i.e. for every number $x$ and every positive real number $p$ two integers $k_1$ and $k_2$ can be found so that $|x - (k_1r_1 + k_2r_2)| < p$ holds.

2008 Bulgarian Autumn Math Competition, Problem 11.4

a) Prove that $\lfloor x\rfloor$ is odd iff $\Big\lfloor 2\{\frac{x}{2}\}\Big\rfloor=1$ ($\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$ and $\{x\}=x-\lfloor x\rfloor$). b) Let $n$ be a natural number. Find the number of [i]square free[/i] numbers $a$, such that $\Big\lfloor\frac{n}{\sqrt{a}}\Big\rfloor$ is odd. (A natural number is [i]square free[/i] if it's not divisible by any square of a prime number).

EMCC Guts Rounds, 2017

[u]Round 1[/u] [b]p1.[/b] If $2m = 200 cm$ and $m \ne 0$, find $c$. [b]p2.[/b] A right triangle has two sides of lengths $3$ and $4$. Find the smallest possible length of the third side. [b]p3.[/b] Given that $20(x + 17) = 17(x + 20)$, determine the value of $x$. [u]Round 2[/u] [b]p4.[/b] According to the Egyptian Metropolitan Culinary Community, food service is delayed on $\frac23$ of flights departing from Cairo airport. On average, if flights with delayed food service have twice as many passengers per flight as those without, what is the probability that a passenger departing from Cairo airport experiences delayed food service? [b]p5.[/b] In a positive geometric sequence $\{a_n\}$, $a_1 = 9$, $a_9 = 25$. Find the integer $k$ such that $a_k = 15$ [b]p6.[/b] In the Delicate, Elegant, and Exotic Music Organization, pianist Hans is selling two types of owers with different prices (per ower): magnolias and myosotis. His friend Alice originally plans to buy a bunch containing $50\%$ more magnolias than myosotis for $\$50$, but then she realizes that if she buys $50\%$ less magnolias and $50\%$ more myosotis than her original plan, she would still need to pay the same amount of money. If instead she buys $50\%$ more magnolias and $50\%$ less myosotis than her original plan, then how much, in dollars, would she need to pay? [u]Round 3[/u] [b]p7.[/b] In square $ABCD$, point $P$ lies on side $AB$ such that $AP = 3$,$BP = 7$. Points $Q,R, S$ lie on sides $BC,CD,DA$ respectively such that $PQ = PR = PS = AB$. Find the area of quadrilateral $PQRS$. [b]p8.[/b] Kristy is thinking of a number $n < 10^4$ and she says that $143$ is one of its divisors. What is the smallest number greater than $143$ that could divide $n$? [b]p9.[/b] A positive integer $n$ is called [i]special [/i] if the product of the $n$ smallest prime numbers is divisible by the sum of the $n$ smallest prime numbers. Find the sum of the three smallest special numbers. [u]Round 4[/u] [b]p10.[/b] In the diagram below, all adjacent points connected with a segment are unit distance apart. Find the number of squares whose vertices are among the points in the diagram and whose sides coincide with the drawn segments. [img]https://cdn.artofproblemsolving.com/attachments/b/a/923e4d2d44e436ccec90661648967908306fea.png[/img] [b]p11.[/b] Geyang tells Junze that he is thinking of a positive integer. Geyang gives Junze the following clues: $\bullet$ My number has three distinct odd digits. $\bullet$ It is divisible by each of its three digits, as well as their sum. What is the sum of all possible values of Geyang's number? [b]p12.[/b] Regular octagon $ABCDEFGH$ has center $O$ and side length $2$. A circle passes through $A,B$, and $O$. What is the area of the part of the circle that lies outside of the octagon? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2936505p26278645]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2000 Junior Balkan MO, 2

Find all positive integers $n\geq 1$ such that $n^2+3^n$ is the square of an integer. [i]Bulgaria[/i]

2023 China Team Selection Test, P13

Does there exists a positive irrational number ${x},$ such that there are at most finite positive integers ${n},$ satisfy that for any integer $1\leq k\leq n,$ $\{kx\}\geq\frac 1{n+1}?$

2013 Purple Comet Problems, 23

The diagram below shows the regular hexagon $BCEGHJ$ surrounded by the rectangle $ADFI$. Let $\theta$ be the measure of the acute angle between the side $\overline{EG}$ of the hexagon and the diagonal of the rectangle $\overline{AF}$. There are relatively prime positive integers $m$ and $n$ so that $\sin^2\theta  = \tfrac{m}{n}$. Find $m + n$. [asy] import graph; size(3.2cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((-1,3)--(-1,2)--(-0.13,1.5)--(0.73,2)--(0.73,3)--(-0.13,3.5)--cycle); draw((-1,3)--(-1,2)); draw((-1,2)--(-0.13,1.5)); draw((-0.13,1.5)--(0.73,2)); draw((0.73,2)--(0.73,3)); draw((0.73,3)--(-0.13,3.5)); draw((-0.13,3.5)--(-1,3)); draw((-1,3.5)--(0.73,3.5)); draw((0.73,3.5)--(0.73,1.5)); draw((-1,1.5)--(0.73,1.5)); draw((-1,3.5)--(-1,1.5)); label("$ A $",(-1.4,3.9),SE*labelscalefactor); label("$ B $",(-1.4,3.28),SE*labelscalefactor); label("$ C $",(-1.4,2.29),SE*labelscalefactor); label("$ D $",(-1.4,1.45),SE*labelscalefactor); label("$ E $",(-0.3,1.4),SE*labelscalefactor); label("$ F $",(0.8,1.45),SE*labelscalefactor); label("$ G $",(0.8,2.24),SE*labelscalefactor); label("$ H $",(0.8,3.26),SE*labelscalefactor); label("$ I $",(0.8,3.9),SE*labelscalefactor); label("$ J $",(-0.25,3.9),SE*labelscalefactor); [/asy]

2009 Postal Coaching, 5

For positive integers $n, k$ with $1 \le k \le n$, define $$L(n, k) = Lcm \,(n, n - 1, n -2, ..., n - k + 1)$$ Let $f(n)$ be the largest value of $k$ such that $L(n, 1) < L(n, 2) < ... < L(n, k)$. Prove that $f(n) < 3\sqrt{n}$ and $f(n) > k$ if $n > k! + k$.

2023 Korea Junior Math Olympiad, 1

Find all integer pairs $(x, y)$ such that $$y^2 = x^3 + 2x^2 + 2x + 1.$$

2016 Israel Team Selection Test, 2

Rothschild the benefactor has a certain number of coins. A man comes, and Rothschild wants to share his coins with him. If he has an even number of coins, he gives half of them to the man and goes away. If he has an odd number of coins, he donates one coin to charity so he can have an even number of coins, but meanwhile another man comes. So now he has to share his coins with two other people. If it is possible to do so evenly, he does so and goes away. Otherwise, he again donates a few coins to charity (no more than 3). Meanwhile, yet another man comes. This goes on until Rothschild is able to divide his coins evenly or until he runs out of money. Does there exist a natural number $N$ such that if Rothschild has at least $N$ coins in the beginning, he will end with at least one coin?

2001 Tuymaada Olympiad, 2

Is it possible to arrange integers in the cells of the infinite chechered sheet so that every integer appears at least in one cell, and the sum of any $10$ numbers in a row vertically or horizontal, would be divisible by $101$?

2017 Taiwan TST Round 2, 1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]

2021 Middle European Mathematical Olympiad, 4

Let $n \ge 3$ be an integer. Zagi the squirrel sits at a vertex of a regular $n$-gon. Zagi plans to make a journey of $n-1$ jumps such that in the $i$-th jump, it jumps by $i$ edges clockwise, for $i \in \{1, \ldots,n-1 \}$. Prove that if after $\lceil \tfrac{n}{2} \rceil$ jumps Zagi has visited $\lceil \tfrac{n}{2} \rceil+1$ distinct vertices, then after $n-1$ jumps Zagi will have visited all of the vertices. ([i]Remark.[/i] For a real number $x$, we denote by $\lceil x \rceil$ the smallest integer larger or equal to $x$.)

2024 ELMO Shortlist, N1

Find all pairs $(n,d)$ of positive integers such that $d\mid n^2$ and $(n-d)^2<2d$. [i]Linus Tang[/i]

2016 PUMaC Number Theory A, 2

For positive integers $i$ and $j$, define $d(i,j)$ as follows: $d(1,j) = 1, d(i,1) = 1$ for all $i$ and $j$, and for $i, j > 1$, $d(i,j) = d(i-1,j) + d(i,j-1) + d(i-1,j-1)$. Compute the remainder when $d(3,2016)$ is divided by $1000$.

2016 Hong Kong TST, 4

Mable and Nora play a game according to the following steps in order: 1. Mable writes down any 2015 distinct prime numbers in ascending order in a row. The product of these primes is Marble's score. 2. Nora writes down a positive integer 3. Mable draws a vertical line between two adjacent primes she has written in step 1, and compute the product of the prime(s) on the left of the vertical line 4. Nora must add the product obtained by Marble in step 3 to the number she has written in step 2, and the sum becomes Nora's score. If Marble and Nora's scores have a common factor greater than 1, Marble wins, otherwise Nora wins. Who has a winning strategy?