This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2022 Austrian MO Beginners' Competition, 4

Determine all prime numbers $p, q$ and $r$ with $p + q^2 = r^4$. [i](Karl Czakler)[/i]

2022 JBMO Shortlist, N1

Determine all pairs $(k, n)$ of positive integers that satisfy $$1! + 2! + ... + k! = 1 + 2 + ... + n.$$

1980 IMO, 13

Prove that the integer $145^{n} + 3114\cdot 138^{n}$ is divisible by $1981$ if $n=1981$, and that it is not divisible by $1981$ if $n=1980$.

2017 Germany, Landesrunde - Grade 11/12, 4

Find the smallest positive integer $n$ that is divisible by $100$ and has exactly $100$ divisors.

2021 BMT, T1

How many integers $n$ from $1$ to $2020$, inclusive, are there such that $2020$ divides $n^2 + 1$?

2015 Middle European Mathematical Olympiad, 8

Let $n\ge 2$ be an integer. Determine the number of positive integers $m$ such that $m\le n$ and $m^2+1$ is divisible by $n$.

2015 Bosnia and Herzegovina Junior BMO TST, 1

Solve equation $x(x+1) = y(y+4)$ where $x$, $y$ are positive integers

2010 Junior Balkan Team Selection Tests - Romania, 2

Show that: a) There is a sequence of non-zero natural numbers $a_1, a_2, ...$ uniquely determined, so that: $n = \sum _ {d | n} a _ d$ for whatever $n \in N ^ {*}$ . b) There is a sequence of non-zero natural numbers $b_1, b_2, ...$ uniquely determined, so that: $n = \prod _ {d | n} b _ d$ for whatever $n \in N ^ {*}$ . Note: The sum from a), respectively the product from b), are made after all the natural divisors $d$ of the number $n$ , including $1$ and $n$ .

2002 China Team Selection Test, 3

Let $ p_i \geq 2$, $ i \equal{} 1,2, \cdots n$ be $ n$ integers such that any two of them are relatively prime. Let: \[ P \equal{} \{ x \equal{} \sum_{i \equal{} 1}^{n} x_i \prod_{j \equal{} 1, j \neq i}^{n} p_j \mid x_i \text{is a non \minus{} negative integer}, i \equal{} 1,2, \cdots n \} \] Prove that the biggest integer $ M$ such that $ M \not\in P$ is greater than $ \displaystyle \frac {n \minus{} 2}{2} \cdot \prod_{i \equal{} 1}^{n} p_i$, and also find $ M$.

2000 Moldova National Olympiad, Problem 1

Find all positive integers $a$ for which $a^{2000}-1$ is divisible by $10$.

2014 Contests, 3

Find all pairs $(m, n)$ of positive integers satsifying $m^6+5n^2=m+n^3$.

2022 Korea National Olympiad, 8

$p$ is a prime number such that its remainder divided by 8 is 3. Find all pairs of rational numbers $(x,y)$ that satisfy the following equation. $$p^2 x^4-6px^2+1=y^2$$

1984 All Soviet Union Mathematical Olympiad, 386

Let us call "absolutely prime" the prime number, if having transposed its digits in an arbitrary order, we obtain prime number again. Prove that its notation cannot contain more than three different digits.

2022 Saudi Arabia BMO + EGMO TST, 1.1

Find all positive integers $k$ such that the product of the first $k$ primes increased by $1$ is a power of an integer (with an exponent greater than $1$).

2023 Korea - Final Round, 4

Find all positive integers $n$ satisfying the following. $$2^n-1 \text{ doesn't have a prime factor larger than } 7$$

2012 Indonesia TST, 4

The Fibonacci sequence $\{F_n\}$ is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all positive integers $n$. Determine all triplets of positive integers $(k,m,n)$ such that $F_n = F_m^k$.

2022 Argentina National Olympiad Level 2, 2

Uri must paint some integers from $1$ to $2022$ (inclusive) in red, such that none of the differences between two red numbers is a prime number. Determine the maximum number of numbers Uri can paint red. [b]Note 1:[/b] The [i]difference [/i]between two distinct numbers is the subtraction of the larger minus the smaller. [b]Note 2:[/b] $1$ is not a prime number.

2019 Singapore Senior Math Olympiad, 3

Let $a_1,a_2,\cdots,a_{2000}$ be distinct positive integers such that $1 \leq a_1 < a_2 < \cdots < a_{2000} < 4000$ such that the LCM (least common multiple) of any two of them is $\geq 4000$. Show that $a_1 \geq 1334$

2004 Romania Team Selection Test, 18

Let $p$ be a prime number and $f\in \mathbb{Z}[X]$ given by \[ f(x) = a_{p-1}x^{p-2} + a_{p-2}x^{p-3} + \cdots + a_2x+ a_1 , \] where $a_i = \left( \tfrac ip\right)$ is the Legendre symbol of $i$ with respect to $p$ (i.e. $a_i=1$ if $ i^{\frac {p-1}2} \equiv 1 \pmod p$ and $a_i=-1$ otherwise, for all $i=1,2,\ldots,p-1$). a) Prove that $f(x)$ is divisible with $(x-1)$, but not with $(x-1)^2$ iff $p \equiv 3 \pmod 4$; b) Prove that if $p\equiv 5 \pmod 8$ then $f(x)$ is divisible with $(x-1)^2$ but not with $(x-1)^3$. [i]Sugested by Calin Popescu.[/i]

ABMC Team Rounds, 2018

[u]Round 1[/u] [b]1.1.[/b] What is the area of a circle with diameter $2$? [b]1.2.[/b] What is the slope of the line through $(2, 1)$ and $(3, 4)$? [b]1.3.[/b] What is the units digit of $2^2 \cdot 4^4 \cdot 6^6$ ? [u]Round 2[/u] [b]2.1.[/b] Find the sum of the roots of $x^2 - 5x + 6$. [b]2. 2.[/b] Find the sum of the solutions to $|2 - x| = 1$. [b]2.3.[/b] On April $1$, $2018$, Mr. Dospinescu, Mr. Phaovibul and Mr. Pohoata all go swimming at the same pool. From then on, Mr. Dospinescu returns to the pool every 4th day, Mr. Phaovibul returns every $7$th day and Mr. Pohoata returns every $13$th day. What day will all three meet each other at the pool again? Give both the month and the day. [u]Round 3[/u] [b]3. 1.[/b] Kendall and Kylie are each selling t-shirts separately. Initially, they both sell t-shirts for $\$ 33$ each. A week later, Kendall marks up her t-shirt price by $30 \%$, but after seeing a drop in sales, she discounts her price by $30\%$ the following week. If Kim wants to buy $360$ t-shirts, how much money would she save by buying from Kendall instead of Kylie? Write your answer in dollars and cents. [b]3.2.[/b] Richard has English, Math, Science, Spanish, History, and Lunch. Each class is to be scheduled into one distinct block during the day. There are six blocks in a day. How many ways could he schedule his classes such that his lunch block is either the $3$rd or $4$th block of the day? [b]3.3.[/b] How many lattice points does $y = 1 + \frac{13}{17}x$ pass through for $x \in [-100, 100]$ ? (A lattice point is a point where both coordinates are integers.) [u]Round 4[/u] [b]4. 1.[/b] Unsurprisingly, Aaron is having trouble getting a girlfriend. Whenever he asks a girl out, there is an eighty percent chance she bursts out laughing in his face and walks away, and a twenty percent chance that she feels bad enough for him to go with him. However, Aaron is also a player, and continues asking girls out regardless of whether or not previous ones said yes. What is the minimum number of girls Aaron must ask out for there to be at least a fifty percent chance he gets at least one girl to say yes? [b]4.2.[/b] Nithin and Aaron are two waiters who are working at the local restaurant. On any given day, they may be fired for poor service. Since Aaron is a veteran who has learned his profession well, the chance of him being fired is only $\frac{2}{25}$ every day. On the other hand, Nithin (who never paid attention during job training) is very lazy and finds himself constantly making mistakes, and therefore the chance of him being fired is $\frac{2}{5}$. Given that after 1 day at least one of the waiters was fired, find the probability Nithin was fired. [b]4.3.[/b] In a right triangle, with both legs $4$, what is the sum of the areas of the smallest and largest squares that can be inscribed? An inscribed square is one whose four vertices are all on the sides of the triangle. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784569p24468582]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 IMO Shortlist, 7

For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$. [i]Proposed by Juhan Aru, Estonia[/i]

2012 Princeton University Math Competition, A1 / B4

Albert has a very large bag of candies and he wants to share all of it with his friends. At first, he splits the candies evenly amongst his $20$ friends and himself and he finds that there are five left over. Ante arrives, and they redistribute the candies evenly again. This time, there are three left over. If the bag contains over $500$ candies, what is the fewest number of candies the bag can contain?

2022 AMC 10, 17

How many three-digit positive integers $\underline{a}$ $\underline{b}$ $\underline{c}$ are there whose nonzero digits $a$, $b$, and $c$ satisfy $$0.\overline{\underline{a}~\underline{b}~\underline{c}} = \frac{1}{3} (0.\overline{a} + 0.\overline{b} + 0.\overline{c})?$$ (The bar indicates repetition, thus $0.\overline{\underline{a}~\underline{b}~\underline{c}}$ in the infinite repeating decimal $0.\underline{a}~\underline{b}~\underline{c}~\underline{a}~\underline{b}~\underline{c}~\cdots$) $\textbf{(A) }9\qquad\textbf{(B) }10\qquad\textbf{(C) }11\qquad\textbf{(D) }13\qquad\textbf{(E) }14$

2018 Serbia Team Selection Test, 1

Prove that there exists infinetly many natural number $n$ such that at least one of the numbers $2^{2^n}+1$ and $2018^{2^n}+1$ is not a prime.

2023 UMD Math Competition Part I, #24

Bob is practicing addition in base $2.$ Each time he adds two numbers in base $2,$ he counts the number of carries. For example, when summing the numbers $1001$ and $1011$ in base $2,$ \[\begin{array}{ccccc} \overset{1}{}&& \overset {1}{}&\overset {1}{} \\ 0&1&0&0&1\\0&1&0&1&1 \\ \hline 1&0&1&0&0 \end{array}\] there are three carries (shown on the top row). Suppose that Bob starts with the number $0,$ and adds $111~($i.e. $7$ in base $2)$ to it one hundred times to obtain the number $1010111100~($i.e. $700$ in base $2).$ How many carries occur (in total) in these one hundred calculations? \[\mathrm a. ~ 280\qquad \mathrm b.~289\qquad \mathrm c. ~291 \qquad \mathrm d. ~294 \qquad \mathrm e. ~297\]