Found problems: 15460
2022 Francophone Mathematical Olympiad, 4
find the smallest integer $n\geq1$ such that the equation :
$$a^2+b^2+c^2-nd^2=0 $$
has $(0,0,0,0)$ as unique solution .
2022 Indonesia Regional, 1
Let $A$ and $B$ be sets such that there are exactly $144$ sets which are subsets of either $A$ or $B$. Determine the number of elements $A \cup B$ has.
2016 Kosovo Team Selection Test, 2
Show that for all positive integers $n\geq 2$ the last digit of the number $2^{2^n}+1$ is $7$ .
2020 South East Mathematical Olympiad, 5
Consider the set $I=\{ 1,2, \cdots, 2020 \}$. Let $W= \{w(a,b)=(a+b)+ab | a,b \in I \} \cap I$, $Y=\{y(a,b)=(a+b) \cdot ab | a,b \in I \} \cap I$ be its two subsets. Further, let $X= W \cap Y$.
[b](1)[/b] Find the sum of maximal and minimal elements in $X$.
[b](2)[/b] An element $n=y(a,b) (a \le b)$ in $Y$ is called [i]excellent[/i], if its representation is not unique (for instance, $20=y(1,5)=y(2,3)$). Find the number of [i]excellent[/i] elements in $Y$.
[hide=Note][b](2)[/b] is only for Grade 11.[/hide]
2024 Indonesia TST, 2
For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.
1988 IMO Shortlist, 25
A positive integer is called a [b]double number[/b] if its decimal representation consists of a block of digits, not commencing with 0, followed immediately by an identical block. So, for instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers which are perfect squares.
2020 Colombia National Olympiad, 4
Find all of the sequences $a_1, a_2, a_3, . . .$ of real numbers that satisfy the following property: given any sequence $b_1, b_2, b_3, . . .$ of positive integers such that for all $n \ge 1$ we have $b_n \ne b_{n+1}$ and $b_n | b_{n+1}$, then the sub-sequence $a_{b_1}, a_{b_2}, a_{b_3}, . . .$ is an arithmetic progression.
1985 Miklós Schweitzer, 5
Let $F(x,y)$ and $G(x,y)$ be relatively prime homogeneous polynomials of degree at least one having integer coefficients. Prove that there exists a number $c$ depending only on the degrees and the maximum of the absolute values of the coefficients of $F$ and $G$ such that $F(x,y)\neq G(x,y)$ for any integers $x$ and $y$ that are relatively prime and satisfy $\max \{ |x|,|y|\} > c$. [K. Gyory]
2013 District Olympiad, 2
Find all real numbers $x$ for which the number $$a =\frac{2x + 1}{x^2 + 2x + 3}$$ is an integer.
2018 Ukraine Team Selection Test, 7
The prime number $p > 2$ and the integer $n$ are given. Prove that the number $pn^2$ has no more than one divisor $d$ for which $n^2+d$ is the square of the natural number.
.
2025 Harvard-MIT Mathematics Tournament, 7
There exists a unique triple $(a,b,c)$ of positive real numbers that satisfies the equations $$2(a^2+1)=3(b^2+1)=4(c^2+1) \quad \text{and} \quad ab+bc+ca=1.$$ Compute $a+b+c.$
1967 IMO, 3
Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that
\[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\]
is divisible by the product $c_1c_2\ldots c_n$.
2024 Turkey Junior National Olympiad, 1
Find all non negative integer pairs $(a,b)$ such that $3^a5^b-2024$ is a square of a positive integer.
2020 Malaysia IMONST 2, 3
Given integers $a$ and $b$ such that $a^2+b^2$ is divisible by $11$. Prove that $a$ and $b$ are both divisible by $11$.
2011 IFYM, Sozopol, 6
Find all prime numbers $p$ for which $x^4\equiv -1\, (mod\, p)$ has a solution.
2018 PUMaC Number Theory A, 2
For a positive integer $n$, let $f(n)$ be the number of (not necessarily distinct) primes in the prime factorization of $k$. For example, $f(1) = 0, f(2) = 1, $ and $f(4) = f(6) = 2$. let $g(n)$ be the number of positive integers $k \leq n$ such that $f(k) \geq f(j)$ for all $j \leq n$. Find $g(1) + g(2) + \ldots + g(100)$.
2017 Canadian Mathematical Olympiad Qualification, 1
Malcolm writes a positive integer on a piece of paper. Malcolm doubles this integer and subtracts 1, writing this second result on the same piece of paper. Malcolm then doubles the second integer and adds 1, writing this third integer on the paper. If all of the numbers Malcolm writes down are prime, determine all possible values for the first integer.
2007 ITest, 59
Let $T=\text{TNFTPP}$. Fermi and Feynman play the game $\textit{Probabicloneme}$ in which Fermi wins with probability $a/b$, where $a$ and $b$ are relatively prime positive integers such that $a/b<1/2$. The rest of the time Feynman wins (there are no ties or incomplete games). It takes a negligible amount of time for the two geniuses to play $\textit{Probabicloneme}$ so they play many many times. Assuming they can play infinitely many games (eh, they're in Physicist Heaven, we can bend the rules), the probability that they are ever tied in total wins after they start (they have the same positive win totals) is $(T-332)/(2T-601)$. Find the value of $a$.
2012 All-Russian Olympiad, 1
Let $a_1,\ldots a_{11}$ be distinct positive integers, all at least $2$ and with sum $407$. Does there exist an integer $n$ such that the sum of the $22$ remainders after the division of $n$ by $a_1,a_2,\ldots ,a_{11},4a_1,4a_2,\ldots ,4a_{11}$ is $2012$?
2014 ELMO Shortlist, 9
Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \][i]Proposed by Shashwat Kishore[/i]
2000 Junior Balkan Team Selection Tests - Moldova, 6
Show that among any 39 consecutive natural numbers, there is a number whose sum of the digits is devisible by 11.
Maryland University HSMC part II, 2009
[b]p1.[/b] (a) Show that for every set of three integers, we can find two of them whose average is also an integer.
(b) Show that for every set of $5$ integers, there is a subset of three of them whose average is an integer.
[b]p2.[/b] Let $f(x) = x^2 + ax + b$ and $g(x) = x^2 + cx + d$ be two different quadratic polynomials such that $f(7) + f(11) = g(7) + g(11)$.
(a) Show that $f(9) = g(9)$.
(b) Show that $x = 9$ is the only value of $x$ where $f(x) = g(x)$.
[b]p3.[/b] Consider a rectangle $ABCD$ and points $E$ and $F$ on the sides $BC$ and $CD$, respectively, such that the areas of the triangles $ABE$, $ECF$, and $ADF$ are $11$, $3$, and $40$, respectively. Compute the area of rectangle $ABCD$.
[img]https://cdn.artofproblemsolving.com/attachments/f/0/2b0bb188a4157894b85deb32d73ab0077cd0b7.png[/img]
[b]p4.[/b] How many ways are there to put markers on a $8 \times 8$ checkerboard, with at most one marker per square, such that each of the $8$ rows and each of the $8$ columns contain an odd number of markers?
[b]p5.[/b] A robot places a red hat or a blue hat on each person in a room. Each person can see the colors of the hats of everyone in the room except for his own. Each person tries to guess the color of his hat. No communication is allowed between people and each person guesses at the same time (so no timing information can be used, for example). The only information a person has is the color of each other person’s hat.
Before receiving the hats, the people are allowed to get together and decide on their strategies. One way to think of this is that each of the $n$ people makes a list of all the possible combinations he could see (there are $2^{n-1}$ such combinations). Next to each combination, he writes what his guess will be for the color of his own hat. When the hats are placed, he looks for the combination on his list and makes the guess that is listed there.
(a) Prove that if there are exactly two people in the room, then there is a strategy that guarantees that always at least one person gets the right answer for his hat color.
(b) Prove that if you have a group of $2008$ people, then there is a strategy that guarantees that always at least $1004$ people will make a correct guess.
(c) Prove that if there are $2009$ people, then there is no strategy that guarantees that always at least $1005$ people will make a correct guess.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 PUMaC Algebra A, 2
Let $f(x)=x^2+4x+2$. Let $r$ be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers $a$, $p$, $q$ so $a$ is square-free and $p,q$ are relatively prime positive integers. Compute $a+p+q$.
1990 India National Olympiad, 2
Determine all non-negative integral pairs $ (x, y)$ for which
\[ (xy \minus{} 7)^2 \equal{} x^2 \plus{} y^2.\]
2016 Irish Math Olympiad, 1
If the three-digit number $ABC$ is divisible by $27$, prove that the three-digit numbers $BCA$ and $CAB$ are also divisible by $27$.