This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1996 AMC 12/AHSME, 29

If $n$ is a positive integer such that $2n$ has $28$ positive divisors and $3n$ has $30$ positive divisors, then how many positive divisors does $6n$ have? $\text{(A)}\ 32 \qquad \text{(B)}\ 34 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 36\qquad \text{(E)}\ 38$

2001 Switzerland Team Selection Test, 8

Find two smallest natural numbers $n$ for which each of the fractions $\frac{68}{n+70},\frac{69}{n+71},\frac{70}{n+72},...,\frac{133}{n+135}$ is irreducible.

2015 USA Team Selection Test, 1

Let $f : \mathbb Q \to \mathbb Q$ be a function such that for any $x,y \in \mathbb Q$, the number $f(x+y)-f(x)-f(y)$ is an integer. Decide whether it follows that there exists a constant $c$ such that $f(x) - cx$ is an integer for every rational number $x$. [i]Proposed by Victor Wang[/i]

1981 Dutch Mathematical Olympiad, 3

We want to split the set of natural numbers from $1$ to $3n$, where $n$ is a natural number, into $n$ mutually disjoint sets $\{x,y,z\}$ of three elements such that always holds: $x + y = 3z$. Is this possible for : a) $n = 5$? b) $n=10$? In both cases, provide either such a split or proof that such a split is not possible.

Mid-Michigan MO, Grades 7-9, 2019

[b]p1.[/b] Prove that the equation $x^6 - 143x^5 - 917x^4 + 51x^3 + 77x^2 + 291x + 1575 = 0$ has no integer solutions. [b]p2.[/b] There are $81$ wheels in a storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that it can be detected with certainty after four measurements on a balance scale. [b]p3.[/b] Rob and Ann multiplied the numbers from $1$ to $100$ and calculated the sum of digits of this product. For this sum, Rob calculated the sum of its digits as well. Then Ann kept repeating this operation until he got a one-digit number. What was this number? [b]p4.[/b] Rui and Jui take turns placing bishops on the squares of the $ 8\times 8$ chessboard in such a way that bishops cannot attack one another. (In this game, the color of the rooks is irrelevant.) The player who cannot place a rook loses the game. Rui takes the first turn. Who has a winning strategy, and what is it? [b]p5.[/b] The following figure can be cut along sides of small squares into several (more than one) identical shapes. What is the smallest number of such identical shapes you can get? [img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 IMO Shortlist, 5

We call a positive integer [i]alternating[/i] if every two consecutive digits in its decimal representation are of different parity. Find all positive integers $n$ such that $n$ has a multiple which is alternating.

2012 NZMOC Camp Selection Problems, 2

Show the the sum of any three consecutive positive integers is a divisor of the sum of their cubes.

2020-IMOC, N1

$\textbf{N1.}$ Find all nonnegative integers $a,b,c$ such that \begin{align*} a^2+b^2+c^2-ab-bc-ca = a+b+c \end{align*} [i]Proposed by usjl[/i]

2022 Taiwan TST Round 2, N

A positive integer is said to be [b]palindromic[/b] if it remains the same when its digits are reversed. For example, $1221$ or $74847$ are both palindromic numbers. Let $k$ be a positive integer that can be expressed as an $n$-digit number $\overline{a_{n-1}a_{n-2} \cdots a_0}$. Prove that if $k$ is a palindromic number, then $k^2$ is also a palindromic number if and only if $a_0^2 + a^2_1 + \cdots + a^2_{n-1} < 10$. [i]Proposed by Ho-Chien Chen[/i]

EMCC Guts Rounds, 2021

[u]Round 1[/u] [b]p1.[/b] What is the remainder when $2021$ is divided by $102$? [b]p2.[/b] Brian has $2$ left shoes and $2$ right shoes. Given that he randomly picks $2$ of the $4$ shoes, the probability he will get a left shoe and a right shoe is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Compute $p + q$. [b]p3.[/b] In how many ways can $59$ be written as a sum of two perfect squares? (The order of the two perfect squares does not matter.) [u]Round 2 [/u] [b]p4.[/b] Two positive integers have a sum of $60$. Their least common multiple is $273$. What is the positive diffeerence between the two numbers? [b]p5.[/b] How many ways are there to distribute $13$ identical apples among $4$ identical boxes so that no two boxes receive the same number of apples? A box may receive zero apples. [b]p6.[/b] In square $ABCD$ with side length $5$, $P$ lies on segment $AB$ so that $AP = 3$ and $Q$ lies on segment $AD$ so that $AQ = 4$. Given that the area of triangle $CPQ$ is $x$, compute $2x$. [u]Round 3 [/u] [b]p7.[/b] Find the number of ordered triples $(a, b, c)$ of nonnegative integers such that $2a+3b+5c = 15$. [b]p8.[/b] What is the greatest integer $n \le 15$ such that $n + 1$ and $n^2 + 3$ are both prime? [b]p9.[/b] For positive integers $a, b$, and $c$, suppose that $gcd \,\,(a, b) = 21$, $gcd \,\,(a, c) = 10$, and $gcd \,\,(b,c) = 11$. Find $\frac{abc}{lcm \,\,(a,b,c)}$ . (Note: $gcd$ is the greatest common divisor function and $lcm$ is the least common multiple function.) [u]Round 4[/u] [b]p10.[/b] The vertices of a square in the coordinate plane are at $(0, 0)$, $(0, 6)$, $(6, 0)$, and $(6, 6)$. Line $\ell$ intersects the square at exactly two lattice points (that is, points with integer coordinates). How many such lines $\ell$ are there that divide the square into two regions, one of them having an area of $12$? [b]p11.[/b] Let $f(n)$ be defined as follows for positive integers $n$: $f(1) = 0$, $f(n) = 1$ if $n$ is prime, and $f(n) = f(n - 1) + 1$ otherwise. What is the maximum value of $f(n)$ for $n \le 120$? [b]p12.[/b] The graph of the equation $y = x^3 + ax^2 + bx + c$ passes through the points $(2,4)$, $(3, 9)$, and $(4, 16)$. What is $b$? PS. You should use hide for answers. Rounds 5- 8 have been posted [url=https://artofproblemsolving.com/community/c3h2949415p26408227]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Contests, 4

(a) Determine all pairs $(x, y)$ of (real) numbers with $0 < x < 1$ and $0 <y < 1$ for which $x + 3y$ and $3x + y$ are both integer. An example is $(x,y) =( \frac{8}{3}, \frac{7}{8}) $, because $ x+3y =\frac38 +\frac{21}{8} =\frac{24}{8} = 3$ and $ 3x+y = \frac98 + \frac78 =\frac{16}{8} = 2$. (b) Determine the integer $m > 2$ for which there are exactly $119$ pairs $(x,y)$ with $0 < x < 1$ and $0 < y < 1$ such that $x + my$ and $mx + y$ are integers. Remark: if $u \ne v,$ the pairs $(u, v)$ and $(v, u)$ are different.

2021 Junior Balkan Team Selection Tests - Romania, P2

For any non-empty subset $X$ of $M=\{1,2,3,...,2021\}$, let $a_X$ be the sum of the greatest and smallest elements of $X$. Determine the arithmetic mean of all the values of $a_X$, as $X$ covers all the non-empty subsets of $M$.

2015 Dutch BxMO/EGMO TST, 2

Given are positive integers $r$ and $k$ and an infi nite sequence of positive integers $a_1 \le a_2 \le ...$ such that $\frac{r}{a_r}= k + 1$. Prove that there is a $t$ satisfying $\frac{t}{a_t}=k$.

2015 Saudi Arabia GMO TST, 4

For each positive integer $n$, define $s(n) =\sum_{k=0}^n r_k$, where $r_k$ is the remainder when $n \choose k$ is divided by $3$. Find all positive integers $n$ such that $s(n) \ge n$. Malik Talbi

2022 Moldova EGMO TST, 8

On a board there are $n\geq2$ distinct nonnegative integers such that the sum of each two distinct numbers is a power of $2$. What are the possible values of $n$?

2024 Bundeswettbewerb Mathematik, 1

Determine all pairs $(x,y)$ of integers satisfying \[(x+2)^4-x^4=y^3.\]

1992 Baltic Way, 6

Prove that the product of the 99 numbers $ \frac{k^3\minus{}1}{k^3\plus{}1},k\equal{}2,3,\ldots,100$ is greater than $ 2/3$.

2018 Costa Rica - Final Round, N3

Let $a$ and $b$ be positive integers such that $2a^2 + a = 3b^2 + b$. Prove that $a-b$ is a perfect square.

Maryland University HSMC part II, 2001

[b]p1.[/b] A band of pirates unloaded some number of treasure chests from their ship. The number of pirates was between $60$ and $69$ (inclusive). Each pirate handled exactly $11$ treasure chests, and each treasure chest was handled by exactly $7$ pirates. Exactly how many treasure chests were there? Show that your answer is the only solution. [b]p2.[/b] Let $a$ and $b$ be the lengths of the legs of a right triangle, let $c$ be the length of the hypotenuse, and let $h$ be the length of the altitude drawn from the vertex of the right angle to the hypotenuse. Prove that $c+h>a+b$. [b]p3.[/b] Prove that $$\frac{1}{70}< \frac{1}{2} \frac{3}{4} \frac{5}{6} ... \frac{2001}{2002} < \frac{1}{40}$$ [b]p4.[/b] Given a positive integer $a_1$ we form a sequence $a_1 , a_2 , a _3,...$ as follows: $a_2$ is obtained from $a_1$ by adding together the digits of $a_1$ raised to the $2001$-st power; $a_3$ is obtained from $a_2$ using the same rule, and so on. For example, if $a_1 =25$, then $a_2 =2^{2001}+5^{2001}$, which is a $1399$-digit number containing $106$ $0$'s, $150$ $1$'s, 4124$ 42$'s, $157$ $3$'s, $148$ $4$'s, $141$ $5$'s, $128$ $6$'s, $1504 47$'s, $152$ $8$'s, $143$ $9$'s. So $a_3 = 106 \times 0^{2001}+ 150 \times 1^{2001}+ 124 \times 2^{2001}+ 157 \times 3^{2001}+ ...+ 143 \times 9^{2001}$ which is a $1912$-digit number, and so forth. Prove that if any positive integer $a_1$ is chosen to start the sequence, then there is a positive integer $M$ (which depends on $a_1$ ) that is so large that $a_n < M$ for all $n=1,2,3,...$ [b]p5.[/b] Let $P(x)$ be a polynomial with integer coefficients. Suppose that there are integers $a$, $b$, and $c$ such that $P(a)=0$, $P(b)=1$, and $P(c)=2$. Prove that there is at most one integer $n$ such that $P(n)=4$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 China Team Selection Test, 3

For a non-empty finite set $A$ of positive integers, let $\text{lcm}(A)$ denote the least common multiple of elements in $A$, and let $d(A)$ denote the number of prime factors of $\text{lcm}(A)$ (counting multiplicity). Given a finite set $S$ of positive integers, and $$f_S(x)=\sum_{\emptyset \neq A \subset S} \frac{(-1)^{|A|} x^{d(A)}}{\text{lcm}(A)}.$$ Prove that, if $0 \le x \le 2$, then $-1 \le f_S(x) \le 0$.

2015 Serbia National Math Olympiad, 2

Let $k$ be fixed positive integer . Let $Fk(n)$ be smallest positive integer bigger than $kn$ such that $Fk(n)*n$ is a perfect square . Prove that if $Fk(n)=Fk(m)$ than $m=n$.

2020 Princeton University Math Competition, A2/B4

How many ordered triples of nonzero integers $(a, b, c)$ satisfy $2abc = a + b + c + 4$?

2010 Portugal MO, 3

Consider a square $(p-1)\times(p-1)$, where $p$ is a prime number, which is divided by squares $1\times 1$ whose sides are parallel to the initial square's sides. Show that it is possible to select $p$ vertices such that there are no three collinear vertices.

1970 IMO Longlists, 49

For $n \in \mathbb N$, let $f(n)$ be the number of positive integers $k \leq n$ that do not contain the digit $9$. Does there exist a positive real number $p$ such that $\frac{f(n)}{n} \geq p$ for all positive integers $n$?

2019 China Team Selection Test, 2

Let $S$ be a set of positive integers, such that $n \in S$ if and only if $$\sum_{d|n,d<n,d \in S} d \le n$$ Find all positive integers $n=2^k \cdot p$ where $k$ is a non-negative integer and $p$ is an odd prime, such that $$\sum_{d|n,d<n,d \in S} d = n$$