This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1979 IMO Shortlist, 19

Consider the sequences $(a_n), (b_n)$ defined by \[a_1=3, \quad b_1=100 , \quad a_{n+1}=3^{a_n} , \quad b_{n+1}=100^{b_n} \] Find the smallest integer $m$ for which $b_m > a_{100}.$

2000 Turkey Team Selection Test, 3

Let $P(x)=x+1$ and $Q(x)=x^2+1.$ Consider all sequences $\langle(x_k,y_k)\rangle_{k\in\mathbb{N}}$ such that $(x_1,y_1)=(1,3)$ and $(x_{k+1},y_{k+1})$ is either $(P(x_k), Q(y_k))$ or $(Q(x_k),P(y_k))$ for each $k. $ We say that a positive integer $n$ is nice if $x_n=y_n$ holds in at least one of these sequences. Find all nice numbers.

2010 Benelux, 4

Find all quadruples $(a, b, p, n)$ of positive integers, such that $p$ is a prime and \[a^3 + b^3 = p^n\mbox{.}\] [i](2nd Benelux Mathematical Olympiad 2010, Problem 4)[/i]

2017 Vietnamese Southern Summer School contest, Problem 3

Prove that, for any integer $n\geq 2$, there exists an integer $x$ such that $3^n|x^3+2017$, but $3^{n+1}\not | x^3+2017$.

2023 Brazil EGMO Team Selection Test, 2

Let $p$ and $q$ be distinct odd primes. Show that $$\bigg\lceil \dfrac{p^q+q^p-pq+1}{pq} \bigg\rceil$$ is even.

2004 India IMO Training Camp, 2

Find all primes $p \geq 3$ with the following property: for any prime $q<p$, the number \[ p - \Big\lfloor \frac{p}{q} \Big\rfloor q \] is squarefree (i.e. is not divisible by the square of a prime).

2018 PUMaC Number Theory B, 3

For a positive integer $n$, let $f(n)$ be the number of (not necessarily distinct) primes in the prime factorization of $k$. For example, $f(1) = 0, f(2) = 1, $ and $f(4) = f(6) = 2$. let $g(n)$ be the number of positive integers $k \leq n$ such that $f(k) \geq f(j)$ for all $j \leq n$. Find $g(1) + g(2) + \ldots + g(100)$.

1966 IMO Shortlist, 29

A given natural number $N$ is being decomposed in a sum of some consecutive integers. [b]a.)[/b] Find all such decompositions for $N=500.$ [b]b.)[/b] How many such decompositions does the number $N=2^{\alpha }3^{\beta }5^{\gamma }$ (where $\alpha ,$ $\beta $ and $\gamma $ are natural numbers) have? Which of these decompositions contain natural summands only? [b]c.)[/b] Determine the number of such decompositions (= decompositions in a sum of consecutive integers; these integers are not necessarily natural) for an arbitrary natural $N.$ [b]Note by Darij:[/b] The $0$ is not considered as a natural number.

1989 Tournament Of Towns, (226) 4

Find the positive integer solutions of the equation $$ x+ \frac{1}{y+ \frac{1}{z}}= \frac{10}{7}$$ (G. Galperin)

2012 Tournament of Towns, 2

The number $4$ has an odd number of odd positive divisors, namely $1$, and an even number of even positive divisors, namely $2$ and $4$. Is there a number with an odd number of even positive divisors and an even number of odd positive divisors?

2015 Romania Team Selection Tests, 3

If $k$ and $n$ are positive integers , and $k \leq n$ , let $M(n,k)$ denote the least common multiple of the numbers $n , n-1 , \ldots , n-k+1$.Let $f(n)$ be the largest positive integer $ k \leq n$ such that $M(n,1)<M(n,2)<\ldots <M(n,k)$ . Prove that : [b](a)[/b] $f(n)<3\sqrt{n}$ for all positive integers $n$ . [b](b)[/b] If $N$ is a positive integer , then $f(n) > N$ for all but finitely many positive integers $n$.

2007 Cono Sur Olympiad, 1

Find all pairs $(x,y)$ of nonnegative integers that satisfy \[x^3y+x+y=xy+2xy^2.\]

Mid-Michigan MO, Grades 10-12, 2013

[b]p1.[/b] A function $f$ defined on the set of positive numbers satisfies the equality $$f(xy) = f(x) + f(y), x, y > 0.$$ Find $f(2007)$ if $f\left( \frac{1}{2007} \right) = 1$. [b]p2.[/b] The plane is painted in two colors. Show that there is an isosceles right triangle with all vertices of the same color. [b]p3.[/b] Show that the number of ways to cut a $2n \times 2n$ square into $1\times 2$ dominoes is divisible by $2$. [b]p4.[/b] Two mirrors form an angle. A beam of light falls on one mirror. Prove that the beam is reflected only finitely many times (even if the angle between mirrors is very small). [b]p5.[/b] A sequence is given by the recurrence relation $a_{n+1} = (s(a_n))^2 +1$, where $s(x)$ is the sum of the digits of the positive integer $x$. Prove that starting from some moment the sequence is periodic. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Philippine MO, 2

Suppose $a_1, a_2, \ldots$ is a sequence of integers, and $d$ is some integer. For all natural numbers $n$, \begin{align*}\text{(i)} |a_n| \text{ is prime;} && \text{(ii)} a_{n+2} = a_{n+1} + a_n + d. \end{align*} Show that the sequence is constant.

2013 Balkan MO Shortlist, N4

Let $p$ be a prime number greater than $3$. Prove that the sum $1^{p+2} + 2^{p+2} + ...+ (p-1)^{p+2}$ is divisible by $p^2$.

2015 Junior Regional Olympiad - FBH, 5

In how many ways you can pay $2015\$$ using bills of $1\$$, $10\$$, $100\$$ and $200\$$

2001 Estonia Team Selection Test, 5

Find the exponent of $37$ in the representation of the number $111...... 11$ with $3\cdot 37^{2000}$ digits equals to $1$, as product of prime powers

MathLinks Contest 2nd, 7.2

Find all positive integers n with the property that $n^3 - 1$ is a perfect square.

2020 CHKMO, 2

Let $S={1,2,\ldots,100}$. Consider a partition of $S$ into $S_1,S_2,\ldots,S_n$ for some $n$, i.e. $S_i$ are nonempty, pairwise disjoint and $\displaystyle S=\bigcup_{i=1}^n S_i$. Let $a_i$ be the average of elements of the set $S_i$. Define the score of this partition by \[\dfrac{a_1+a_2+\ldots+a_n}{n}.\] Among all $n$ and partitions of $S$, determine the minimum possible score.

2017 Ecuador Juniors, 5

Two positive integers are coprime if their greatest common divisor is $1$. Let $C$ be the set of all divisors of the number $8775$ that are greater than $ 1$. A set of $k$ consecutive positive integers satisfies that each of them is coprime with some element of $C$. Determine the largest possible value of $K$.

2008 Estonia Team Selection Test, 4

Sequence $(G_n)$ is defined by $G_0 = 0, G_1 = 1$ and $G_n = G_{n-1} + G_{n-2} + 1$ for every $n \ge2$. Prove that for every positive integer $m$ there exist two consecutive terms in the sequence that are both divisible by $m$.

1999 German National Olympiad, 6b

Determine all pairs ($m,n$) of natural numbers for which $4^m + 5^n$ is a perfect square.

2021 Azerbaijan EGMO TST, 3

Given an integer $k\geq 2$, determine all functions $f$ from the positive integers into themselves such that $f(x_1)!+f(x_2)!+\cdots f(x_k)!$ is divisibe by $x_1!+x_2!+\cdots x_k!$ for all positive integers $x_1,x_2,\cdots x_k$. $Albania$

2011 Tuymaada Olympiad, 4

In a set of consecutive positive integers, there are exactly $100$ perfect cubes and $10$ perfect fourth powers. Prove that there are at least $2000$ perfect squares in the set.

2024 Macedonian Balkan MO TST, Problem 3

Let $p \neq 5$ be a prime number. Prove that $p^5-1$ has a prime divisor of the form $5x+1$.