This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2015 Cono Sur Olympiad, 5

Determine if there exists an infinite sequence of not necessarily distinct positive integers $a_1, a_2, a_3,\ldots$ such that for any positive integers $m$ and $n$ where $1 \leq m < n$, the number $a_{m+1} + a_{m+2} + \ldots + a_{n}$ is not divisible by $a_1 + a_2 + \ldots + a_m$.

2014 NIMO Problems, 1

Define $H_n = 1+\frac{1}{2}+\cdots+\frac{1}{n}$. Let the sum of all $H_n$ that are terminating in base 10 be $S$. If $S = m/n$ where m and n are relatively prime positive integers, find $100m+n$. [i]Proposed by Lewis Chen[/i]

2020 Princeton University Math Competition, B2

Last year, the U.S. House of Representatives passed a bill which would make Washington, D.C. into the $51$st state. Naturally, the mathematicians are upset that Congress won’t prioritize mathematical interest of flag design in choosing how many U.S. states there should be. Suppose the U.S. flag must contain, as it does now, stars arranged in rows alternating between $n$ and $n - 1$ stars, starting and ending with rows of n stars, where $n \ge 2$ is some integer and the flag has more than one row. What is the minimum number of states that the U.S. would need to contain so that there are at least three different ways, excluding rotations, to arrange the stars on the flag?

2020 MMATHS, 6

Consider the function $f(n) = n^2 + n + 1$. For each $n$, let $d_n$ be the smallest positive integer with $gcd(n, dn) = 1$ and $f(n) | f(d_n)$. Find $d_6 + d_7 + d_8 + d_9 + d_{10}$.

2012 India Regional Mathematical Olympiad, 2

Let $a,b,c$ be positive integers such that $a|b^3, b|c^3$ and $c|a^3$. Prove that $abc|(a+b+c)^{13}$

2010 Saint Petersburg Mathematical Olympiad, 7

$600$ integer numbers from $[1,1000]$ colored in red. Natural segment $[n,k]$ is called yummy if for every natural $t$ from $[1,k-n]$ there are two red numbers $a,b$ from $[n,k]$ and $b-a=t$ . Prove that there is yummy segment with $[a,b]$ with $b-a \geq 199$

2018 Bulgaria JBMO TST, 3

Find all positive integers $n$ such that the number $$n^6 + 5n^3 + 4n + 116$$ is the product of two or more consecutive numbers.

2010 Tournament Of Towns, 2

Pete has an instrument which can locate the midpoint of a line segment, and also the point which divides the line segment into two segments whose lengths are in a ratio of $n : (n + 1)$, where $n$ is any positive integer. Pete claims that with this instrument, he can locate the point which divides a line segment into two segments whose lengths are at any given rational ratio. Is Pete right?

2003 China Team Selection Test, 3

Sequence $\{ a_n \}$ satisfies: $a_1=3$, $a_2=7$, $a_n^2+5=a_{n-1}a_{n+1}$, $n \geq 2$. If $a_n+(-1)^n$ is prime, prove that there exists a nonnegative integer $m$ such that $n=3^m$.

2010 Saudi Arabia Pre-TST, 4.1

Find all triples $(a, b, c)$ of positive integers for which $$\begin{cases} a + bc=2010 \\ b + ca = 250\end{cases}$$

2011 AIME Problems, 8

In triangle $ABC$, $BC = 23$, $CA = 27$, and $AB = 30$. Points $V$ and $W$ are on $\overline{AC}$ with $V$ on $\overline{AW}$, points $X$ and $Y$ are on $\overline{BC}$ with $X$ on $\overline{CY}$, and points $Z$ and $U$ are on $\overline{AB}$ with $Z$ on $\overline{BU}$. In addition, the points are positioned so that $\overline{UV} \parallel \overline{BC}$, $\overline{WX} \parallel \overline{AB}$, and $\overline{YZ} \parallel \overline{CA}$. Right angle folds are then made along $\overline{UV}$, $\overline{WX}$, and $\overline{YZ}$. The resulting figure is placed on a level floor to make a table with triangular legs. Let $h$ be the maximum possible height of a table constructed from triangle $ABC$ whose top is parallel to the floor. Then $h$ can be written in the form $\tfrac{k \sqrt{m}}{n}$, where $k$ and $n$ are relatively prime positive integers and $m$ is a positive integer that is not divisible by the square of any prime. Find $k + m + n$. [asy] unitsize(1 cm); pair translate; pair[] A, B, C, U, V, W, X, Y, Z; A[0] = (1.5,2.8); B[0] = (3.2,0); C[0] = (0,0); U[0] = (0.69*A[0] + 0.31*B[0]); V[0] = (0.69*A[0] + 0.31*C[0]); W[0] = (0.69*C[0] + 0.31*A[0]); X[0] = (0.69*C[0] + 0.31*B[0]); Y[0] = (0.69*B[0] + 0.31*C[0]); Z[0] = (0.69*B[0] + 0.31*A[0]); translate = (7,0); A[1] = (1.3,1.1) + translate; B[1] = (2.4,-0.7) + translate; C[1] = (0.6,-0.7) + translate; U[1] = U[0] + translate; V[1] = V[0] + translate; W[1] = W[0] + translate; X[1] = X[0] + translate; Y[1] = Y[0] + translate; Z[1] = Z[0] + translate; draw (A[0]--B[0]--C[0]--cycle); draw (U[0]--V[0],dashed); draw (W[0]--X[0],dashed); draw (Y[0]--Z[0],dashed); draw (U[1]--V[1]--W[1]--X[1]--Y[1]--Z[1]--cycle); draw (U[1]--A[1]--V[1],dashed); draw (W[1]--C[1]--X[1]); draw (Y[1]--B[1]--Z[1]); dot("$A$",A[0],N); dot("$B$",B[0],SE); dot("$C$",C[0],SW); dot("$U$",U[0],NE); dot("$V$",V[0],NW); dot("$W$",W[0],NW); dot("$X$",X[0],S); dot("$Y$",Y[0],S); dot("$Z$",Z[0],NE); dot(A[1]); dot(B[1]); dot(C[1]); dot("$U$",U[1],NE); dot("$V$",V[1],NW); dot("$W$",W[1],NW); dot("$X$",X[1],dir(-70)); dot("$Y$",Y[1],dir(250)); dot("$Z$",Z[1],NE); [/asy]

2009 Tournament Of Towns, 7

Tags: number theory , gcd , prime
Initially a number $6$ is written on a blackboard. At $n$-th step an integer $k$ on the blackboard is replaced by $k+gcd(k,n)$. Prove that at each step the number on the blackboard increases either by $1$ or by a prime number.

2021-2022 OMMC, 1

Find the sum of all positive integers $n$ where the mean and median of $\{20, 42, 69, n\}$ are both integers. [i]Proposed by bissue[/i]

2021 China Team Selection Test, 6

Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$ Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard. Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move.

1992 Austrian-Polish Competition, 1

For a natural number $n$, denote by $s(n)$ the sum of all positive divisors of n. Prove that for every $n > 1$ the product $s(n - 1)s(n)s(n + 1)$ is even.

2014 District Olympiad, 4

A $10$ digit positive integer is called a $\emph{cute}$ number if its digits are from the set $\{1,2,3\}$ and every two consecutive digits differ by $1$. [list=a] [*]Prove that exactly $5$ digits of a cute number are equal to $2$. [*]Find the total number of cute numbers. [*]Prove that the sum of all cute numbers is divisible by $1408$.[/list]

1998 Korea - Final Round, 3

Denote by $\phi(n)$ for all $n\in\mathbb{N}$ the number of positive integer smaller than $n$ and relatively prime to $n$. Also, denote by $\omega(n)$ for all $n\in\mathbb{N}$ the number of prime divisors of $n$. Given that $\phi(n)|n-1$ and $\omega(n)\leq 3$. Prove that $n$ is a prime number.

2017 CentroAmerican, 2

We call a pair $(a,b)$ of positive integers, $a<391$, [i]pupusa[/i] if $$\textup{lcm}(a,b)>\textup{lcm}(a,391)$$ Find the minimum value of $b$ across all [i]pupusa[/i] pairs. Fun Fact: OMCC 2017 was held in El Salvador. [i]Pupusa[/i] is their national dish. It is a corn tortilla filled with cheese, meat, etc.

2009 Postal Coaching, 2

Find all pairs $(x, y)$ of natural numbers $x$ and $y$ such that $\frac{xy^2}{x+y}$ is a prime

2021 Indonesia TST, N

A positive integer $n$ is said to be $interesting$ if there exist some coprime positive integers $a$ and $b$ such that $n = a^2 - ab + b^2$. Show that if $n^2$ is $interesting$, then $n$ or $3n$ is $interesting$.

2025 Canada National Olympiad, 2

Determine all positive integers $a$, $b$, $c$, $p$, where $p$ and $p+2$ are odd primes and \[2^ap^b=(p+2)^c-1.\]

2024 Poland - Second Round, 6

Given is a prime number $p$. Prove that the number $$p \cdot (p^2 \cdot \frac{p^{p-1}-1}{p-1})!$$ is divisible by $$\prod_{i=1}^{p}(p^i)!.$$

1993 Abels Math Contest (Norwegian MO), 3

The Fermat-numbers are defined by $F_n = 2^{2^n}+1$ for $n\in N$. (a) Prove that $F_n = F_{n-1}F_{n-2}....F_1F_0 +2$ for $n > 0$. (b) Prove that any two different Fermat numbers are coprime

2005 Singapore Senior Math Olympiad, 1

The digits of a $3$-digit number are interchanged so that none of the digits retain their original position. The difference of the two numbers is a $2$-digit number and is a perfect square. Find the difference.

2019 Saudi Arabia Pre-TST + Training Tests, 2.1

Suppose that $a, b, c,d$ are pairwise distinct positive integers such that $a+b = c+d = p$ for some odd prime $p > 3$ . Prove that $abcd$ is not a perfect square.