Found problems: 15460
2003 Iran MO (3rd Round), 1
suppose this equation: x <sup>2</sup> +y <sup>2</sup> +z <sup>2</sup> =w <sup>2</sup> . show that the solution of this equation ( if w,z have same parity) are in this form:
x=2d(XZ-YW), y=2d(XW+YZ),z=d(X <sup>2</sup> +Y <sup>2</sup> -Z <sup>2</sup> -W <sup>2</sup> ),w=d(X <sup>2</sup> +Y <sup>2</sup> +Z <sup>2</sup> +W <sup>2</sup> )
1996 Mexico National Olympiad, 4
For which integers $n\ge 2$ can the numbers $1$ to $16$ be written each in one square of a squared $4\times 4$ paper such that the $8$ sums of the numbers in rows and columns are all different and divisible by $n$?
Mathley 2014-15, 2
Let $n$ be a positive integer and $p$ a prime number $p > n + 1$.
Prove that the following equation does not have integer solution $$1 + \frac{x}{n + 1} + \frac{x^2}{2n + 1} + ...+ \frac{x^p}{pn + 1} = 0$$
Luu Ba Thang, Department of Mathematics, College of Education
1998 AMC 12/AHSME, 12
How many different prime numbers are factors of $ N$ if
\[ \log_2 (\log_3 (\log_5 (\log_7 N))) \equal{} 11?
\]$ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 7$
2015 Purple Comet Problems, 12
The product $20! \cdot 21! \cdot 22! \cdot \cdot \cdot 28!$ can be expressed in the form $m$ $\cdot$ $n^3$, where m and n are positive integers, and m is not divisible by the cube of any prime. Find m.
2008 Germany Team Selection Test, 3
Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$
[i]Author: Gerhard Wöginger, Netherlands[/i]
2024 Azerbaijan National Mathematical Olympiad, 1
Alice thinks about a natural number in her mind. Bob tries to find that number by asking him the following 10 questions:
[list]
[*]Is it divisible by 1?
[*]Is it divisible by 2?
[*]Is it divisible by 3?
[*]...
[*]Is it divisible by 9?
[*]Is it divisible by 10?
[/list]
Alice's answer to all questions except one was "yes". When she answers "no", she adds that "the greatest common factor of the number I have in mind and the divisor in the question you asked is 1”. According to this information, to which question did Alice answer "no"?
2006 China Northern MO, 2
$p$ is a prime number that is greater than $2$. Let $\{ a_{n}\}$ be a sequence such that $ na_{n+1}= (n+1) a_{n}-\left( \frac{p}{2}\right)^{4}$.
Show that if $a_{1}=5$, the $16 \mid a_{81}$.
2019 LMT Spring, Team Round
[b]p1.[/b] David runs at $3$ times the speed of Alice. If Alice runs $2$ miles in $30$ minutes, determine how many minutes it takes for David to run a mile.
[b]p2.[/b] Al has $2019$ red jelly beans. Bob has $2018$ green jelly beans. Carl has $x$ blue jelly beans. The minimum number of jelly beans that must be drawn in order to guarantee $2$ jelly beans of each color is $4041$. Compute $x$.
[b]p3.[/b] Find the $7$-digit palindrome which is divisible by $7$ and whose first three digits are all $2$.
[b]p4.[/b] Determine the number of ways to put $5$ indistinguishable balls in $6$ distinguishable boxes.
[b]p5.[/b] A certain reduced fraction $\frac{a}{b}$ (with $a,b > 1$) has the property that when $2$ is subtracted from the numerator and added to the denominator, the resulting fraction has $\frac16$ of its original value. Find this fraction.
[b]p6.[/b] Find the smallest positive integer $n$ such that $|\tau(n +1)-\tau(n)| = 7$. Here, $\tau(n)$ denotes the number of divisors of $n$.
[b]p7.[/b] Let $\vartriangle ABC$ be the triangle such that $AB = 3$, $AC = 6$ and $\angle BAC = 120^o$. Let $D$ be the point on $BC$ such that $AD$ bisect $\angle BAC$. Compute the length of $AD$.
[b]p8.[/b] $26$ points are evenly spaced around a circle and are labeled $A$ through $Z$ in alphabetical order. Triangle $\vartriangle LMT$ is drawn. Three more points, each distinct from $L, M$, and $T$ , are chosen to form a second triangle. Compute the probability that the two triangles do not overlap.
[b]p9.[/b] Given the three equations
$a +b +c = 0$
$a^2 +b^2 +c^2 = 2$
$a^3 +b^3 +c^3 = 19$
find $abc$.
[b]p10.[/b] Circle $\omega$ is inscribed in convex quadrilateral $ABCD$ and tangent to $AB$ and $CD$ at $P$ and $Q$, respectively. Given that $AP = 175$, $BP = 147$,$CQ = 75$, and $AB \parallel CD$, find the length of $DQ$.
[b]p11. [/b]Let $p$ be a prime and m be a positive integer such that $157p = m^4 +2m^3 +m^2 +3$. Find the ordered pair $(p,m)$.
[b]p12.[/b] Find the number of possible functions $f : \{-2,-1, 0, 1, 2\} \to \{-2,-1, 0, 1, 2\}$ that satisfy the following conditions.
(1) $f (x) \ne f (y)$ when $x \ne y$
(2) There exists some $x$ such that $f (x)^2 = x^2$
[b]p13.[/b] Let $p$ be a prime number such that there exists positive integer $n$ such that $41pn -42p^2 = n^3$. Find the sum of all possible values of $p$.
[b]p14.[/b] An equilateral triangle with side length $ 1$ is rotated $60$ degrees around its center. Compute the area of the region swept out by the interior of the triangle.
[b]p15.[/b] Let $\sigma (n)$ denote the number of positive integer divisors of $n$. Find the sum of all $n$ that satisfy the equation $\sigma (n) =\frac{n}{3}$.
[b]p16[/b]. Let $C$ be the set of points $\{a,b,c\} \in Z$ for $0 \le a,b,c \le 10$. Alice starts at $(0,0,0)$. Every second she randomly moves to one of the other points in $C$ that is on one of the lines parallel to the $x, y$, and $z$ axes through the point she is currently at, each point with equal probability. Determine the expected number of seconds it will take her to reach $(10,10,10)$.
[b]p17.[/b] Find the maximum possible value of $$abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3$$ where $a,b,c$ are real such that $a +b +c = 0$.
[b]p18.[/b] Circle $\omega$ with radius $6$ is inscribed within quadrilateral $ABCD$. $\omega$ is tangent to $AB$, $BC$, $CD$, and $DA$ at $E, F, G$, and $H$ respectively. If $AE = 3$, $BF = 4$ and $CG = 5$, find the length of $DH$.
[b]p19.[/b] Find the maximum integer $p$ less than $1000$ for which there exists a positive integer $q$ such that the cubic equation $$x^3 - px^2 + q x -(p^2 -4q +4) = 0$$ has three roots which are all positive integers.
[b]p20.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle ABC = 60^o$,$\angle ACB = 20^o$. Let $P$ be the point such that $CP$ bisects $\angle ACB$ and $\angle PAC = 30^o$. Find $\angle PBC$.
PS. You had better use hide for answers.
2010 Dutch Mathematical Olympiad, 2
A number is called polite if it can be written as $ m + (m+1)+...+ n$, for certain positive integers $ m <n$ . For example: $18$ is polite, since $18 =5 + 6 + 7$. A number is called a power of two if it can be written as $2^{\ell}$ for
some integer $\ell \ge 0$.
(a) Show that no number is both polite and a power of two.
(b) Show that every positive integer is polite or a power of two.
2014 BMT Spring, 16
Let $n$ be the smallest positive integer such that the number obtained by taking $n$’s rightmost digit (decimal expansion) and moving it to be the leftmost digit is $7$ times $n$. Determine the number of digits in $n$.
2015 Thailand TSTST, 2
Find all integer solutions to the equation $y^2=2x^4+17$.
1966 IMO Longlists, 11
Does there exist an integer $z$ that can be written in two different ways as $z = x! + y!$, where $x, y$ are natural numbers with $x \le y$ ?
2010 Flanders Math Olympiad, 1
How many zeros does $101^{100} - 1$ end with?
1974 Vietnam National Olympiad, 1
Find all positive integers $n$ and $b$ with $0 < b < 10$ such that if $a_n$ is the positive integer with $n$ digits, all of them $1$, then $a_{2n} - b a_n$ is a square.
2010 China National Olympiad, 3
Suppose $a_1,a_2,a_3,b_1,b_2,b_3$ are distinct positive integers such that
\[(n \plus{} 1)a_1^n \plus{} na_2^n \plus{} (n \minus{} 1)a_3^n|(n \plus{} 1)b_1^n \plus{} nb_2^n \plus{} (n \minus{} 1)b_3^n\]
holds for all positive integers $n$. Prove that there exists $k\in N$ such that $ b_i \equal{} ka_i$ for $ i \equal{} 1,2,3$.
2015 Dutch IMO TST, 5
Let $N$ be the set of positive integers.
Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers
2012 Tuymaada Olympiad, 4
Let $p=1601$. Prove that if
\[\dfrac {1} {0^2+1}+\dfrac{1}{1^2+1}+\cdots+\dfrac{1}{(p-1)^2+1}=\dfrac{m} {n},\]
where we only sum over terms with denominators not divisible by $p$ (and the fraction $\dfrac {m} {n}$ is in reduced terms) then $p \mid 2m+n$.
[i]Proposed by A. Golovanov[/i]
2002 Irish Math Olympiad, 3
Find all triples of positive integers $ (p,q,n)$, with $ p$ and $ q$ primes, satisfying:
$ p(p\plus{}3)\plus{}q(q\plus{}3)\equal{}n(n\plus{}3)$.
2016 Saudi Arabia Pre-TST, 1.3
Let $a, b$ be two positive integers such that $b + 1|a^2 + 1$,$ a + 1|b^2 + 1$. Prove that $a, b$ are odd numbers.
2003 Iran MO (3rd Round), 9
Does there exist an infinite set $ S$ such that for every $ a, b \in S$ we have $ a^2 \plus{} b^2 \minus{} ab \mid (ab)^2$.
2010 Ukraine Team Selection Test, 6
Find all pairs of odd integers $a$ and $b$ for which there exists a natural number$ c$ such that the number $\frac{c^n+1}{2^na+b}$ is integer for all natural $n$.
2024 All-Russian Olympiad Regional Round, 11.2
Let $x_1<x_2< \ldots <x_{2024}$ be positive integers and let $p_i=\prod_{k=1}^{i}(x_k-\frac{1}{x_k})$ for $i=1,2, \ldots, 2024$. What is the maximal number of positive integers among the $p_i$?
2014 Lusophon Mathematical Olympiad, 5
Find all quadruples of positive integers $(k,a,b,c)$ such that $2^k=a!+b!+c!$ and $a\geq b\geq c$.
2019 IMC, 7
Let $C=\{4,6,8,9,10,\ldots\}$ be the set of composite positive integers. For each $n\in C$ let $a_n$ be the smallest positive integer $k$ such that $k!$ is divisible by $n$. Determine whether the following series converges:
$$\sum_{n\in C}\left(\frac{a_n}{n}\right)^n.$$
[i]Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan[/i]