This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2011 Romanian Master of Mathematics, 4

Given a positive integer $\displaystyle n = \prod_{i=1}^s p_i^{\alpha_i}$, we write $\Omega(n)$ for the total number $\displaystyle \sum_{i=1}^s \alpha_i$ of prime factors of $n$, counted with multiplicity. Let $\lambda(n) = (-1)^{\Omega(n)}$ (so, for example, $\lambda(12)=\lambda(2^2\cdot3^1)=(-1)^{2+1}=-1$). Prove the following two claims: i) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = +1$; ii) There are infinitely many positive integers $n$ such that $\lambda(n) = \lambda(n+1) = -1$. [i](Romania) Dan Schwarz[/i]

2005 CentroAmerican, 1

Among the positive integers that can be expressed as the sum of 2005 consecutive integers, which occupies the 2005th position when arranged in order? [i]Roland Hablutzel, Venezuela[/i] [hide="Remark"]The original question was: Among the positive integers that can be expressed as the sum of 2004 consecutive integers, and also as the sum of 2005 consecutive integers, which occupies the 2005th position when arranged in order?[/hide]

1998 Singapore MO Open, 3

Do there exist integers $x$ and $y$ such that $19^{19} = x^3 +y^4$ ? Justify your answer.

2015 Serbia National Math Olympiad, 4

For integer $a$, $a \neq 0$, $v_2(a)$ is greatest nonnegative integer $k$ such that $2^k | a$. For given $n \in \mathbb{N}$ determine highest possible cardinality of subset $A$ of set $ \{1,2,3,...,2^n \} $ with following property: For all $x, y \in A$, $x \neq y$, number $v_2(x-y)$ is even.

1997 Slovenia National Olympiad, Problem 1

Suppose that $m,n$ are integers greater than $1$ such that $m+n-1$ divides $m^2+n^2-1$. Prove that $m+n-1$ cannot be a prime number.

2023 Princeton University Math Competition, A4 / B6

What is the smallest possible sum of six distinct positive integers for which the sum of any five of them is prime?

2002 Paraguay Mathematical Olympiad, 4

Find all natural numbers $n$ for which $n + 195$ and $n - 274$ are perfect cubes.

1989 IMO Longlists, 20

Let $ R$ be a rectangle that is the union of a finite number of rectangles $ R_i,$ $ 1 \leq i \leq n,$ satisfying the following conditions: [b](i)[/b] The sides of every rectangle $ R_i$ are parallel to the sides of $ R.$ [b](ii)[/b] The interiors of any two different rectangles $ R_i$ are disjoint. [b](iii)[/b] Each rectangle $ R_i$ has at least one side of integral length. Prove that $ R$ has at least one side of integral length. [i]Variant:[/i] Same problem but with rectangular parallelepipeds having at least one integral side.

2012 France Team Selection Test, 3

Let $p$ be a prime number. Find all positive integers $a,b,c\ge 1$ such that: \[a^p+b^p=p^c.\]

2008 IMS, 6

Let $ a_0,a_1,\dots,a_{n \plus{} 1}$ be natural numbers such that $ a_0 \equal{} a_{n \plus{} 1} \equal{} 1$, $ a_i>1$ for all $ 1\leq i \leq n$, and for each $ 1\leq j\leq n$, $ a_i|a_{i \minus{} 1} \plus{} a_{i \plus{} 1}$. Prove that there exist one $ 2$ in the sequence.

2011 Indonesia TST, 4

Let $a, b$, and $c$ be positive integers such that $gcd(a, b) = 1$. Sequence $\{u_k\}$, is given such that $u_0 = 0$, $u_1 = 1$, and u$_{k+2} = au_{k+1} + bu_k$ for all $k \ge 0$. Let $m$ be the least positive integer such that $c | u_m$ and $n$ be an arbitrary positive integer such that $c | u_n$. Show that $m | n$. [hide=PS.] There was a typo in the last line, as it didn't define what n does. Wording comes from [b]tst-2011-1.pdf[/b] from [url=https://sites.google.com/site/imoidn/idntst/2011tst]here[/url]. Correction was made according to #2[/hide]

1983 IMO Shortlist, 18

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

2017 AMC 12/AHSME, 22

A square is drawn in the Cartesian coordinate plane with vertices at $(2,2)$, $(-2,2)$, $(-2,-2)$, and $(2,-2)$. A particle starts at $(0,0)$. Every second it moves with equal probability to one of the eight lattice points (points with integer coordinates) closest to its current position, independently of its previous moves. In other words, the probability is $\frac{1}{8}$ that the particle will move from $(x,y)$ to each of $(x,y+1)$, $(x+1,y+1)$, $(x+1,y)$, $(x+1,y-1)$, $(x,y-1)$, $(x-1,y-1)$, $(x-1,y)$, $(x-1,y+1)$. The particle will eventually hit the square for the first time, either at one of the $4$ corners of the square or one of the $12$ lattice points in the interior of one of the sides of the square. The probability that it will hit at a corner rather than at an interior point of a side is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? $\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 39$

2001 ITAMO, 4

A positive integer is called [i]monotone[/i] if has at least two digits and all its digits are nonzero and appear in a strictly increasing or strictly decreasing order. (a) Compute the sum of all monotone five-digit numbers. (b) Find the number of final zeros in the least common multiple of all monotone numbers (with any number of digits).

1980 Dutch Mathematical Olympiad, 2

Find the product of all divisors of $1980^n$, $n \ge 1$.

2018 Brazil National Olympiad, 3

Let $k$, $n$ be fixed positive integers. In a circular table, there are placed pins numbered successively with the numbers $1, 2 \dots, n$, with $1$ and $n$ neighbors. It is known that pin $1$ is golden and the others are white. Arnaldo and Bernaldo play a game, in which a ring is placed initially on one of the pins and at each step it changes position. The game begins with Bernaldo choosing a starting pin for the ring, and the first step consists of the following: Arnaldo chooses a positive integer $d$ any and Bernaldo moves the ring $d$ pins clockwise or counterclockwise (positions are considered modulo $n$, i.e., pins $x$, $y$ equal if and only if $n$ divides $x-y$). After that, the ring changes its position according to one of the following rules, to be chosen at every step by Arnaldo: [b]Rule 1:[/b] Arnaldo chooses a positive integer $d$ and Bernaldo moves the ring $d$ pins clockwise or counterclockwise. [b]Rule 2:[/b] Arnaldo chooses a direction (clockwise or counterclockwise), and Bernaldo moves the ring in the chosen direction in $d$ or $kd$ pins, where $d$ is the size of the last displacement performed. Arnaldo wins if, after a finite number of steps, the ring is moved to the golden pin. Determine, as a function of $k$, the values of $n$ for which Arnaldo has a strategy that guarantees his victory, no matter how Bernaldo plays.

1969 IMO Longlists, 49

$(NET 4)$ A boy has a set of trains and pieces of railroad track. Each piece is a quarter of circle, and by concatenating these pieces, the boy obtained a closed railway. The railway does not intersect itself. In passing through this railway, the train sometimes goes in the clockwise direction, and sometimes in the opposite direction. Prove that the train passes an even number of times through the pieces in the clockwise direction and an even number of times in the counterclockwise direction. Also, prove that the number of pieces is divisible by $4.$

2011 District Olympiad, 2

a) Show that $m^2- m +1$ is an element of the set $\{n^2 + n +1 | n \in N\}$, for any positive integer $ m$. b) Let $p$ be a perfect square, $p> 1$. Prove that there exists positive integers $r$ and $q$ such that $$p^2 + p +1=(r^2 + r + 1)(q^2 + q + 1).$$

2008 Vietnam National Olympiad, 3

Let $ m \equal{} 2007^{2008}$, how many natural numbers n are there such that $ n < m$ and $ n(2n \plus{} 1)(5n \plus{} 2)$ is divisible by $ m$ (which means that $ m \mid n(2n \plus{} 1)(5n \plus{} 2)$) ?

1940 Moscow Mathematical Olympiad, 059

Consider all positive integers written in a row: $123456789101112131415...$ Find the $206788$-th digit from the left.

1997 Turkey Team Selection Test, 2

Show that for each prime $p \geq 7$, there exist a positive integer $n$ and integers $x_{i}$, $y_{i}$ $(i = 1, . . . , n)$, not divisible by $p$, such that $x_{i}^{2}+ y_{i}^{2}\equiv x_{i+1}^{2}\pmod{p}$ where $x_{n+1} = x_{1}$

2012 Vietnam Team Selection Test, 1

Consider the sequence $(x_n)_{n\ge 1}$ where $x_1=1,x_2=2011$ and $x_{n+2}=4022x_{n+1}-x_n$ for all $n\in\mathbb{N}$. Prove that $\frac{x_{2012}+1}{2012}$ is a perfect square.

2009 Belarus Team Selection Test, 3

Let $ a_0$, $ a_1$, $ a_2$, $ \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $ \gcd (a_i, a_{i \plus{} 1}) > a_{i \minus{} 1}$. Prove that $ a_n\ge 2^n$ for all $ n\ge 0$. [i]Proposed by Morteza Saghafian, Iran[/i]

1954 Moscow Mathematical Olympiad, 286

Consider the set of all $10$-digit numbers expressible with the help of figures $1$ and $2$ only. Divide it into two subsets so that the sum of any two numbers of the same subset is a number which is written with not less than two $3$’s.

2024 Portugal MO, 1

A number is called cool if the sum of its digits is multiple of $17$ and the sum of digits of its successor is multiple of $17$. What is the smallest cool number?