Found problems: 15460
2002 Estonia National Olympiad, 4
Let $a_1, ... ,a_5$ be real numbers such that at least $N$ of the sums $a_i+a_j$ ($i < j$) are integers. Find the greatest value of $N$ for which it is possible that not all of the sums $a_i+a_j$ are integers.
2022 Taiwan TST Round 2, 4
Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$.
Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.
2009 Puerto Rico Team Selection Test, 1
A positive integer is called [i]good [/i] if it can be written as the sum of two distinct integer squares. A positive integer is called [i]better [/i]if it can be written in at least two was as the sum of two integer squares. A positive integer is called [i]best [/i] if it can be written in at least four ways as the sum of two distinct integer squares.
a) Prove that the product of two good numbers is good.
b) Prove that $ 5$ is good, $ 2005$ is better, and $ 2005^2$ is best.
2005 AIME Problems, 8
Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.
2022 Dutch IMO TST, 4
Determine all positive integers $d,$ such that there exists an integer $k\geq 3,$ such that
One can arrange the numbers $d,2d,\ldots,kd$ in a row, such that the sum of every two consecutive of them is a perfect square.
2020 Purple Comet Problems, 28
Let $p, q$, and $r$ be prime numbers such that $2pqr + p + q + r = 2020$. Find $pq + qr + rp$.
2019 LMT Spring, Individual
[b]p1.[/b] Compute $2020 \cdot \left( 2^{(0\cdot1)} + 9 - \frac{(20^1)}{8}\right)$.
[b]p2.[/b] Nathan has five distinct shirts, three distinct pairs of pants, and four distinct pairs of shoes. If an “outfit” has a shirt, pair of pants, and a pair of shoes, how many distinct outfits can Nathan make?
[b]p3.[/b] Let $ABCD$ be a rhombus such that $\vartriangle ABD$ and $\vartriangle BCD$ are equilateral triangles. Find the angle measure of $\angle ACD$ in degrees.
[b]p4.[/b] Find the units digit of $2019^{2019}$.
[b]p5.[/b] Determine the number of ways to color the four vertices of a square red, white, or blue if two colorings that can be turned into each other by rotations and reflections are considered the same.
[b]p6.[/b] Kathy rolls two fair dice numbered from $1$ to $6$. At least one of them comes up as a $4$ or $5$. Compute the probability that the sumof the numbers of the two dice is at least $10$.
[b]p7.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $20x +19y = 2019$.
[b]p8.[/b] Let $p$ be a prime number such that both $2p -1$ and $10p -1$ are prime numbers. Find the sum of all possible values of $p$.
[b]p9.[/b] In a square $ABCD$ with side length $10$, let $E$ be the intersection of $AC$ and $BD$. There is a circle inscribed in triangle $ABE$ with radius $r$ and a circle circumscribed around triangle $ABE$ with radius $R$. Compute $R -r$ .
[b]p10.[/b] The fraction $\frac{13}{37 \cdot 77}$ can be written as a repeating decimal $0.a_1a_2...a_{n-1}a_n$ with $n$ digits in its shortest repeating decimal representation. Find $a_1 +a_2 +...+a_{n-1}+a_n$.
[b]p11.[/b] Let point $E$ be the midpoint of segment $AB$ of length $12$. Linda the ant is sitting at $A$. If there is a circle $O$ of radius $3$ centered at $E$, compute the length of the shortest path Linda can take from $A$ to $B$ if she can’t cross the circumference of $O$.
[b]p12.[/b] Euhan and Minjune are playing tennis. The first one to reach $25$ points wins. Every point ends with Euhan calling the ball in or out. If the ball is called in, Minjune receives a point. If the ball is called out, Euhan receives a point. Euhan always makes the right call when the ball is out. However, he has a $\frac34$ chance of making the right call when the ball is in, meaning that he has a $\frac14$ chance of calling a ball out when it is in. The probability that the ball is in is equal to the probability that the ball is out. If Euhan won, determine the expected number of wrong callsmade by Euhan.
[b]p13.[/b] Find the number of subsets of $\{1, 2, 3, 4, 5, 6,7\}$ which contain four consecutive numbers.
[b]p14.[/b] Ezra and Richard are playing a game which consists of a series of rounds. In each round, one of either Ezra or Richard receives a point. When one of either Ezra or Richard has three more points than the other, he is declared the winner. Find the number of games which last eleven rounds. Two games are considered distinct if there exists a round in which the two games had different outcomes.
[b]p15.[/b] There are $10$ distinct subway lines in Boston, each of which consists of a path of stations. Using any $9$ lines, any pair of stations are connected. However, among any $8$ lines there exists a pair of stations that cannot be reached from one another. It happens that the number of stations is minimized so this property is satisfied. What is the average number of stations that each line passes through?
[b]p16.[/b] There exist positive integers $k$ and $3\nmid m$ for which
$$1 -\frac12 + \frac13 - \frac14 +...+ \frac{1}{53}-\frac{1}{54}+\frac{1}{55}=\frac{3^k \times m}{28\times 29\times ... \times 54\times 55}.$$
Find the value $k$.
[b]p17.[/b] Geronimo the giraffe is removing pellets from a box without replacement. There are $5$ red pellets, $10$ blue pellets, and $15$ white pellets. Determine the probability that all of the red pellets are removed before all the blue pellets and before all of the white pellets are removed.
[b]p18.[/b] Find the remainder when $$70! \left( \frac{1}{4 \times 67}+ \frac{1}{5 \times 66}+...+ \frac{1}{66\times 5}+ \frac{1}{67\times 4} \right)$$ is divided by $71$.
[b]p19.[/b] Let $A_1A_2...A_{12}$ be the regular dodecagon. Let $X$ be the intersection of $A_1A_2$ and $A_5A_{11}$. Given that $X A_2 \cdot A_1A_2 = 10$, find the area of dodecagon.
[b]p20.[/b] Evaluate the following infinite series: $$\sum^{\infty}_{n=1}\sum^{\infty}_{m=1} \frac{n \sec^2m -m \tan^2 n}{3^{m+n}(m+n)}$$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Indonesia MO, 1
Given that $n$ and $r$ are positive integers.
Suppose that
\[ 1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r) \]
Prove that $n$ is a composite number.
LMT Speed Rounds, 23
Let $S$ be the set of all positive integers $n$ such that the sum of all factors of $n$, including $1$ and $n$, is $120$. Compute the sum of all numbers in $S$.
[i]Proposed by Evin Liang[/i]
2011 Cono Sur Olympiad, 1
Find all triplets of positive integers $(x,y,z)$ such that $x^{2}+y^{2}+z^{2}=2011$.
1992 IMO Longlists, 53
Find all integers $\,a,b,c\,$ with $\,1<a<b<c\,$ such that \[ (a-1)(b-1)(c-1) \] is a divisor of $abc-1.$
2009 AIME Problems, 3
A coin that comes up heads with probability $ p > 0$ and tails with probability $ 1\minus{}p > 0$ independently on each flip is flipped eight times. Suppose the probability of three heads and five tails is equal to $ \frac{1}{25}$ of the probability of five heads and three tails. Let $ p \equal{} \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
2024 Simon Marais Mathematical Competition, A2
A positive integer $n$ is [i] tripariable [/i] if it is possible to partition the set $\{1, 2, \dots, n\}$ into disjoint pairs such that the sum of two elements in each pair is a power of $3$. For example $6$ is tripariable because $\{1, 2, \dots, n\}=\{1,2\}\cup\{3,6\}\cup\{4,5\}$ and $$1+2=3^1,\quad 3+6 = 3^2\quad\text{and}\quad4+5=3^2$$ are all powers of 3.
How many positive integers less than or equal to 2024 are tripariable?
2017 Finnish National High School Mathematics Comp, 3
Consider positive integers $m$ and $n$ for which $m> n$ and the number $22 220 038^m-22 220 038^n$ has are eight zeros at the end. Show that $n> 7$.
2000 Argentina National Olympiad, 5
A computer program generates a sequence of numbers with the following rule: the first number is written by Camilo; thereafter, the program calculates the integer division of the last number generated by $18$; thus obtains a quotient and a remainder. The sum of that quotient plus that remainder is the next number generated. For example, if Camilo's number is $5291,$ the computer makes $5291 = 293 \times 18 + 17$, and generates $310 = 293 + 17$. The next number generated will be $21$, since $310 = 17 \times 18 + 4$ and $17 + 4= 21$; etc
Whatever Camilo's initial number is, from some point on, the computer always generates the same number. Determine what is that number that will be repeated indefinitely, if Camilo's initial number is equal to $2^{110}.$
2024 Malaysian IMO Training Camp, 3
Find all primes $p$ such that for any integer $k$, there exist two integers $x$ and $y$ such that $$x^3+2023xy+y^3 \equiv k \pmod p$$
[i]Proposed by Tristan Chaang Tze Shen[/i]
2023-IMOC, N4
Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$, such that $af(a)^3+2abf(a)+bf(b)$ is a perfect square for all positive integers $a,b$.
2005 Turkey MO (2nd round), 6
Suppose that a sequence $(a_n)_{n=1}^{\infty}$ of integers has the following property: For all $n$ large enough (i.e. $n \ge N$ for some $N$ ), $a_n$ equals the number of indices $i$, $1 \le i < n$, such that $a_i + i \ge n$. Find the maximum possible number of integers which occur infinitely many times in the sequence.
2022 Durer Math Competition Finals, 6
In Kacs Aladár street, houses are only found on one side of the road, so that only odd house numbers are found along the street. There are an odd number of allotments, as well. The middle three allotments belong to Scrooge McDuck, so he only put up the smallest of the three house numbers. The numbering of the other houses is standard, and the numbering begins with $1$. What is the largest number in the street if the sum of house numbers put up is $3133$?
2016 Junior Balkan Team Selection Test, 2
Find minimal number of divisors that can number $|2016^m-36^n|$ have,where $m$ and $n$ are natural numbers.
2020 Middle European Mathematical Olympiad, 1#
Let $\mathbb{N}$ be the set of positive integers. Determine all positive integers $k$ for which there exist functions $f:\mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N}\to \mathbb{N}$ such that $g$ assumes infinitely many values and such that $$ f^{g(n)}(n)=f(n)+k$$ holds for every positive integer $n$.
([i]Remark.[/i] Here, $f^{i}$ denotes the function $f$ applied $i$ times i.e $f^{i}(j)=f(f(\dots f(j)\dots ))$.)
1910 Eotvos Mathematical Competition, 2
Let $a, b, c, d$ and $u$ be integers such that each of the numbers
$$ac\ \ , \ \ bc + ad \ \ , \ \ bd$$
is a multiple of $u$. Show that $bc$ and $ad$ are multiples of $u$.
2018 BAMO, 4
(a) Find two quadruples of positive integers $(a,b, c,n)$, each with a different value of $n$ greater than $3$, such that
$$\frac{a}{b} +\frac{b}{c} +\frac{c}{a} = n$$
(b) Show that if $a,b, c$ are nonzero integers such that $\frac{a}{b} +\frac{b}{c} +\frac{c}{a}$ is an integer, then $abc$ is a perfect cube. (A perfect cube is a number of the form $n^3$, where $n$ is an integer.)
ABMC Online Contests, 2022 Oct
[b]p1.[/b] How many two-digit primes have a units digit of $3$?
[b]p2.[/b] How many ways can you arrange the letters $A$, $R$, and $T$ such that it makes a three letter combination? Each letter is used once.
[b]p3.[/b] Hanna and Kevin are running a $100$ meter race. If Hanna takes $20$ seconds to finish the race and Kevin runs $15$ meters per second faster than Hanna, by how many seconds does Kevin finish before Hanna?
[b]p4.[/b] It takes an ant $3$ minutes to travel a $120^o$ arc of a circle with radius $2$. How long (in minutes) would it take the ant to travel the entirety of a circle with radius $2022$?
[b]p5.[/b] Let $\vartriangle ABC$ be a triangle with angle bisector $AD$. Given $AB = 4$, $AD = 2\sqrt2$, $AC = 4$, find the area of $\vartriangle ABC$.
[b]p6.[/b] What is the coefficient of $x^5y^2$ in the expansion of $(x + 2y + 4)^8$?
[b]p7.[/b] Find the least positive integer $x$ such that $\sqrt{20475x}$ is an integer.
[b]p8.[/b] What is the value of $k^2$ if $\frac{x^5 + 3x^4 + 10x^2 + 8x + k}{x^3 + 2x + 4}$ has a remainder of $2$?
[b]p9.[/b] Let $ABCD$ be a square with side length $4$. Let $M$, $N$, and $P$ be the midpoints of $\overline{AB}$, $\overline{BC}$ and $\overline{CD}$, respectively. The area of the intersection between $\vartriangle DMN$ and $\vartriangle ANP$ can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p10.[/b] Let $x$ be all the powers of two from $2^1$ to $2^{2023}$ concatenated, or attached, end to end ($x = 2481632...$). Let y be the product of all the powers of two from $2^1$ to $2^{2023}$ ($y = 2 \cdot 4 \cdot 8 \cdot 16 \cdot 32... $ ). Let 2a be the largest power of two that divides $x$ and $2^b$ be the largest power of two that divides $y$. Compute $\frac{b}{a}$ .
[b]p11.[/b] Larry is making a s’more. He has to have one graham cracker on the top and one on the bottom, with eight layers in between. Each layer can made out of chocolate, more graham crackers, or marshmallows. If graham crackers cannot be placed next to each other, how many ways can he make this s’more?
[b]p12.[/b] Let $ABC$ be a triangle with $AB = 3$, $BC = 4$, $AC = 5$. Circle $O$ is centered at $B$ and has radius $\frac{8\sqrt{3}}{5}$ . The area inside the triangle but not inside the circle can be written as $\frac{a-b\sqrt{c}-d\pi}{e}$ , where $gcd(a, b, d, e) =1$ and $c$ is squarefree. Find $a + b + c + d + e$.
[b]p13.[/b] Let $F(x)$ be a quadratic polynomial. Given that $F(x^2 - x) = F (2F(x) - 1)$ for all $x$, the sum of all possible values of $F(2022)$ can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p14.[/b] Find the sum of all positive integers $n$ such that $6\phi (n) = \phi (5n)+8$, where $\phi$ is Euler’s totient function.
Note: Euler’s totient $(\phi)$ is a function where $\phi (n)$ is the number of positive integers less than and relatively prime to $n$. For example, $\phi (4) = 2$ since only $1$, $3$ are the numbers less than and relatively prime to $4$.
[b]p15.[/b] Three numbers $x$, $y$, and $z$ are chosen at random from the interval $[0, 1]$. The probability that there exists an obtuse triangle with side lengths $x$, $y$, and $z$ can be written in the form $\frac{a\pi-b}{c}$ , where $a$, $b$, $c$ are positive integers with $gcd(a, b, c) = 1$. Find $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1990 Nordic, 4
It is possible to perform three operations $f, g$, and $h$ for positive integers: $f(n) = 10n, g(n) = 10n + 4$, and $h(2n) = n$; in other words, one may write $0$ or $4$ in the end of the number and one may divide an even number by $2$. Prove: every positive integer can be constructed starting from $4$ and performing a finite number of the operations $f,
g,$ and $h$ in some order.