This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2014 Belarus Team Selection Test, 3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2007 Mid-Michigan MO, 10-12

[b]p1.[/b] $17$ rooks are placed on an $8\times 8$ chess board. Prove that there must be at least one rook that is attacking at least $2$ other rooks. [b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins? [b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h, i$ if these letters represent distinct digits and the following multiplication is correct: $\begin{tabular}{ccccc} & & a & b & c \\ x & & & d & e \\ \hline & f & a & c & c \\ + & g & h & i & \\ \hline f & f & f & c & c \\ \end{tabular}$ [b]p4.[/b] Pinocchio rode a bicycle for $3.5$ hours. During every $1$-hour period he went exactly $5$ km. Is it true that his average speed for the trip was $5$ km/h? Explain your reasoning. [b]p5.[/b] Let $a, b, c$ be odd integers. Prove that the equation $ax^2 + bx + c = 0$ cannot have a rational solution. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Argentina National Olympiad, 2

Determine all positive integers $a,b,c,d$ such that$$\begin{cases} a<b \\ a^2c =b^2d \\ ab+cd =2^{99}+2^{101} \end{cases}$$

2022 China Second Round, 2

Integer $n$ has $k$ different prime factors. Prove that $\sigma (n) \mid (2n-k)!$

2024 USA IMO Team Selection Test, 5

Suppose $a_{1} < a_{2}< \cdots < a_{2024}$ is an arithmetic sequence of positive integers, and $b_{1} <b_{2} < \cdots <b_{2024}$ is a geometric sequence of positive integers. Find the maximum possible number of integers that could appear in both sequences, over all possible choices of the two sequences. [i]Ray Li[/i]

1984 IMO Shortlist, 2

Prove: (a) There are infinitely many triples of positive integers $m, n, p$ such that $4mn - m- n = p^2 - 1.$ (b) There are no positive integers $m, n, p$ such that $4mn - m- n = p^2.$

2005 Mexico National Olympiad, 3

Already the complete problem: Determine all pairs $(a,b)$ of integers different from $0$ for which it is possible to find a positive integer $x$ and an integer $y$ such that $x$ is relatively prime to $b$ and in the following list there is an infinity of integers: $\rightarrow\qquad\frac{a + xy}{b}$, $\frac{a + xy^2}{b^2}$, $\frac{a + xy^3}{b^3}$, $\ldots$, $\frac{a + xy^n}{b^n}$, $\ldots$ One idea? :arrow: [b][url=http://www.mathlinks.ro/Forum/viewtopic.php?t=61319]View all the problems from XIX Mexican Mathematical Olympiad[/url][/b]

2015 Azerbaijan JBMO TST, 2

All letters in the word $VUQAR$ are different and chosen from the set $\{1,2,3,4,5\}$. Find all solutions to the equation \[\frac{(V+U+Q+A+R)^2}{V-U-Q+A+R}=V^{{{U^Q}^A}^R}.\]

2010 Contests, 4

Find all integer solutions $(a,b)$ of the equation \[ (a+b+3)^2 + 2ab = 3ab(a+2)(b+2)\]

1987 China National Olympiad, 6

Sum of $m$ pairwise different positive even numbers and $n$ pairwise different positive odd numbers is equal to $1987$. Find, with proof, the maximum value of $3m+4n$.

2012 Belarus Team Selection Test, 1

For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$ [i]Proposed by Suhaimi Ramly, Malaysia[/i]

2012 Thailand Mathematical Olympiad, 2

Let $a_1, a_2, ..., a_{2012}$ be pairwise distinct integers. Show that the equation $(x -a_1)(x - a_2)...(x - a_{2012}) = (1006!)^2$ has at most one integral solution.

2011 Putnam, B2

Let $S$ be the set of all ordered triples $(p,q,r)$ of prime numbers for which at least one rational number $x$ satisfies $px^2+qx+r=0.$ Which primes appear in seven or more elements of $S?$

1974 Swedish Mathematical Competition, 6

For which $n$ can we find positive integers $a_1,a_2,\dots,a_n$ such that \[ a_1^2+a_2^2+\cdots+a_n^2 \] is a square?

2011 Saudi Arabia Pre-TST, 3

Find all integers $n \ge 2$ for which $\sqrt[n]{3^n+ 4^n+5^n+8^n+10^n}$ is an integer.

1995 Iran MO (2nd round), 1

Prove that for every positive integer $n \geq 3$ there exist two sets $A =\{ x_1, x_2,\ldots, x_n\}$ and $B =\{ y_1, y_2,\ldots, y_n\}$ for which [b]i)[/b] $A \cap B = \varnothing.$ [b]ii)[/b] $x_1+ x_2+\cdots+ x_n= y_1+ y_2+\cdots+ y_n.$ [b]ii)[/b] $x_1^2+ x_2^2+\cdots+ x_n^2= y_1^2+ y_2^2+\cdots+ y_n^2.$

2018 CMIMC Number Theory, 1

Suppose $a$, $b$, and $c$ are relatively prime integers such that \[\frac{a}{b+c} = 2\qquad\text{and}\qquad \frac{b}{a+c} = 3.\] What is $|c|$?

2020 Tournament Of Towns, 1

Does there exist a positive integer that is divisible by $2020$ and has equal numbers of digits $0, 1, 2, . . . , 9$ ? Mikhail Evdokimov

2011 China Western Mathematical Olympiad, 1

Does there exist any odd integer $n \geq 3$ and $n$ distinct prime numbers $p_1 , p_2, \cdots p_n$ such that all $p_i + p_{i+1} (i = 1,2,\cdots , n$ and $p_{n+1} = p_{1})$ are perfect squares?

2014 MMATHS, 1

Show that there does not exist a right triangle with all integer side lengths such that exactly one of the side lengths is odd.

2012 District Olympiad, 2

Let $a, b$ and $c$ be positive real numbers such that $$a^2+ab+ac-bc = 0.$$ a) Show that if two of the numbers $a, b$ and $c$ are equal, then at least one of the numbers $a, b$ and $c$ is irrational. b) Show that there exist infinitely many triples $(m, n, p)$ of positive integers such that $$m^2 + mn + mp -np = 0.$$

2019 Brazil National Olympiad, 4

Prove that for every positive integer $m$ there exists a positive integer $n_m$ such that for every positive integer $n \ge n_m$, there exist positive integers $a_1, a_2, \ldots, a_n$ such that $$\frac{1}{a_1^m}+\frac{1}{a_2^m}+\ldots+\frac{1}{a_n^m}=1.$$

2015 India PRMO, 18

$18.$ A subset $B$ of the set of first $100$ positive integers has the property that no two elements of $B$ sum to $125.$ What is the maximum possible number of elements in $B ?$

2002 Mid-Michigan MO, 7-9

[b]p1.[/b] One out of $12$ coins is counterfeited. It is known that its weight differs from the weight of a valid coin but it is unknown whether it is lighter or heavier. How to detect the counterfeited coin with the help of four trials using only a two-pan balance without weights? [b]p2.[/b] Below a $3$-digit number $c d e$ is multiplied by a $2$-digit number $a b$ . Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits. $\begin{tabular}{ccccc} & & c & d & e \\ x & & & a & b \\ \hline & & f & e & g \\ + & c & d & e & \\ \hline & b & b & c & g \\ \end{tabular}$ [b]p3.[/b] Find all integer $n$ such that $\frac{n + 1}{2n - 1}$is an integer. [b]p4[/b]. There are several straight lines on the plane which split the plane in several pieces. Is it possible to paint the plane in brown and green such that each piece is painted one color and no pieces having a common side are painted the same color? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 Iran MO (3rd Round), 3

Let $S$ be an infinite set of positive integers and define: $T=\{ x+y|x,y \in S , x \neq y \} $ Suppose that there are only finite primes $p$ so that: 1.$p \equiv 1 \pmod 4$ 2.There exists a positive integer $s$ so that $p|s,s \in T$. Prove that there are infinity many primes that divide at least one term of $S$.