Found problems: 15460
2010 IMC, 4
Let $a,b$ be two integers and suppose that $n$ is a positive integer for which the set $\mathbb{Z} \backslash \{ax^n + by^n \mid x,y \in \mathbb{Z}\}$ is finite. Prove that $n=1$.
2008 Bulgaria Team Selection Test, 1
For each positive integer $n$, denote by $a_{n}$ the first digit of $2^{n}$ (base ten). Is the number $0.a_{1}a_{2}a_{3}\cdots$ rational?
2016 Azerbaijan BMO TST, 3
$a,b$ are positive integers and $(a!+b!)|a!b!$.Prove that $3a\ge 2b+2$.
1998 Spain Mathematical Olympiad, 2
Find all four-digit numbers which are equal to the cube of the sum of their digits.
2021 Science ON all problems, 1
Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy
$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$
for all $n\in \mathbb{Z}_{\ge 1}$.
[i](Bogdan Blaga)[/i]
2002 Belarusian National Olympiad, 1
Determine the largest possible number of groups one can compose from the integers $1,2,3,..., 19,20$, so that the product of the numbers in each group is a perfect square. (The group may contain exactly one number, in that case the product equals this number, each number must be in exactly one group.)
(E. Barabanov, I. Voronovich)
Mid-Michigan MO, Grades 7-9, 2002
[b]p1.[/b] One out of $12$ coins is counterfeited. It is known that its weight differs from the weight of a valid coin but it is unknown whether it is lighter or heavier. How to detect the counterfeited coin with the help of four trials using only a two-pan balance without weights?
[b]p2.[/b] Below a $3$-digit number $c d e$ is multiplied by a $2$-digit number $a b$ . Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits.
$\begin{tabular}{ccccc}
& & c & d & e \\
x & & & a & b \\
\hline
& & f & e & g \\
+ & c & d & e & \\
\hline
& b & b & c & g \\
\end{tabular}$
[b]p3.[/b] Find all integer $n$ such that $\frac{n + 1}{2n - 1}$is an integer.
[b]p4[/b]. There are several straight lines on the plane which split the plane in several pieces. Is it possible to paint the plane in brown and green such that each piece is painted one color and no pieces having a common side are painted the same color?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1967 All Soviet Union Mathematical Olympiad, 085
a) The digits of a natural number were rearranged. Prove that the sum of given and obtained numbers can't equal $999...9$ ($1967$ of nines).
b) The digits of a natural number were rearranged. Prove that if the sum of the given and obtained numbers equals $1010$, than the given number was divisible by $10$.
2018 Thailand TST, 3
Does there exist an arithmetic progression with $2017$ terms such that each term is not a perfect power, but the product of all $2017$ terms is?
2019 Israel National Olympiad, 6
A set of integers is called [b]legendary[/b] if you can reach any integer from it by using the following action multiple times:
If the numbers $x,y$ are in the set, we may add the number $xy-y^2-y+x$ to the set.
Prove that any legendary set contains at least 8 numbers.
2010 Brazil Team Selection Test, 2
Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.
[i]Proposed by Juhan Aru, Estonia[/i]
2022 New Zealand MO, 1
Find all integers $a, b$ such that $$a^2 + b = b^{2022}.$$
1989 Greece National Olympiad, 2
A collection of short stories written by Papadiamantis contains $70$ short stories, one of $1$ page, one of $2$ pages, ... one of $70$ pages . and not nessecarily in that order. Every short story starts on a new page and numbering of pages of the book starts from the first page . What is the maximum number of short stories that start on page with odd number?
2019 MOAA, 3
For how many ordered pairs of positive integers $(a, b)$ such that $a \le 50$ is it true that $x^2 - ax + b$ has integer roots?
2014 USAMTS Problems, 2:
Find all triples $(x, y, z)$ such that $x, y, z, x - y, y - z, x - z$ are all prime positive integers.
2001 Moldova National Olympiad, Problem 2
Let $S(n)$ denote the sum of digits of a natural number $n$. Find all $n$ for which $n+S(n)=2004$.
2015 Costa Rica - Final Round, N3
Find all the pairs $a,b \in N$ such that $ab-1 |a^2 + 1$.
2018 Caucasus Mathematical Olympiad, 5
Baron Munсhausen discovered the following theorem: "For any positive integers $a$ and $b$ there exists a positive integer $n$ such that $an$ is a perfect cube, while $bn$ is a perfect fifth power". Determine if the statement of Baron’s theorem is correct.
2008 Romania Team Selection Test, 2
Let $ m, n \geq 1$ be two coprime integers and let also $ s$ an arbitrary integer. Determine the number of subsets $ A$ of $ \{1, 2, ..., m \plus{} n \minus{} 1\}$ such that $ |A| \equal{} m$ and $ \sum_{x \in A} x \equiv s \pmod{n}$.
2010 South East Mathematical Olympiad, 1
Let $a,b,c\in\{0,1,2,\cdots,9\}$.The quadratic equation $ax^2+bx+c=0$ has a rational root. Prove that the three-digit number $abc$ is not a prime number.
2022 CHMMC Winter (2022-23), Individual
[b]p1.[/b] Given any four digit number $X = \underline{ABCD}$, consider the quantity $Y(X) = 2 \cdot \underline{AB}+\underline{CD}$. For example, if $X = 1234$, then $Y(X) = 2 \cdot 12+34 = 58$. Find the sum of all natural numbers $n \le 10000$ such that over all four digit numbers $X$, the number $n$ divides $X$ if and only if it also divides $Y(X)$.
[b]p2.[/b] A sink has a red faucet, a blue faucet, and a drain. The two faucets release water into the sink at constant but different rates when turned on, and the drain removes water from the sink at a constant rate when opened. It takes $5$ minutes to fill the sink (from empty to full) when the drain is open and only the red faucet is on, it takes $10$ minutes to fill the sink when the drain is open and only the blue faucet is on, and it takes $15$ seconds to fill the sink when both faucets are on and the drain is closed. Suppose that the sink is currently one-thirds full of water, and the drain is opened. Rounded to the nearest integer, how many seconds will elapse before the sink is emptied (keeping the two faucets closed)?
[b]p3.[/b] One of the bases of a right triangular prism is a triangle $XYZ$ with side lengths $XY = 13$, $YZ = 14$, $ZX = 15$. Suppose that a sphere may be positioned to touch each of the five faces of the prism at exactly one point. A plane parallel to the rectangular face of the prism containing $\overline{YZ}$ cuts the prism and the sphere, giving rise to a cross-section of area $A$ for the prism and area $15\pi$ for the sphere. Find the sum of all possible values of $A$.
[b]p4.[/b] Albert, Brian, and Christine are hanging out by a magical tree. This tree gives each of them a stick, each of which have a non-negative real length. Say that Albert gets a branch of length $x$, Brian a branch of length $y$, and Christine a branch of length $z$, and the lengths follow the condition that $x+y+z = 2$. Let $m$ and $n$ be the minimum and maximum possible values of $xy+yz+xz-xyz$, respectively. What is $m+n$?
[b]p5.[/b] Let $S := MATHEMATICSMATHEMATICSMATHE...$ be the sequence where $7$ copies of the word $MATHEMATICS$ are concatenated together. How many ways are there to delete all but five letters of $S$ such that the resulting subsequence is $CHMMC$?
[b]p6.[/b] Consider two sequences of integers $a_n$ and $b_n$ such that $a_1 = a_2 = 1$, $b_1 = b_2 = 1$ and that the following recursive relations are satisfied for integers $n > 2$:
$$a_n = a_{n-1}a_{n-2}-b_{n-1}b_{n-2},$$
$$b_n = b_{n-1}a_{n-2}+a_{n-1}b_{n-2}.$$
Determine the value of $$\sum_{1\le n\le2023,b_n \ne 0} \frac{a_n}{b_n}.$$
[b]p7.[/b] Suppose $ABC$ is a triangle with circumcenter $O$. Let $A'$ be the reflection of $A$ across $\overline{BC}$. If $BC =12$, $\angle BAC = 60^o$, and the perimeter of $ABC$ is $30$, then find $A'O$.
[b]p8.[/b] A class of $10$ students wants to determine the class president by drawing slips of paper from a box. One of the students, Bob, puts a slip of paper with his name into the box. Each other student has a $\frac12$ probability of putting a slip of paper with their own name into the box and a $\frac12$ probability of not doing so. Later, one slip is randomly selected from the box. Given that Bob’s slip is selected, find the expected number of slips of paper in the box before the slip is selected.
[b]p9.[/b] Let $a$ and $b$ be positive integers, $a > b$, such that $6! \cdot 11$ divides $x^a -x^b$ for all positive integers $x$. What is the minimum possible value of $a+b$?
[b]p10.[/b] Find the number of pairs of positive integers $(m,n)$ such that $n < m \le 100$ and the polynomial $x^m+x^n+1$ has a root on the unit circle.
[b]p11.[/b] Let $ABC$ be a triangle and let $\omega$ be the circle passing through $A$, $B$, $C$ with center $O$. Lines $\ell_A$, $\ell_B$, $\ell_C$ are drawn tangent to $\omega$ at $A$, $B$, $C$ respectively. The intersections of these lines form a triangle $XYZ$ where $X$ is the intersection of $\ell_B$ and $\ell_C$, $Y$ is the intersection of $\ell_C$ and $\ell_A$, and $Z$ is the intersection of $\ell_A$ and $\ell_B$. Let $P$ be the intersection of lines $\overline{OX}$ and $\overline{YZ}$. Given $\angle ACB = \frac32 \angle ABC$ and $\frac{AC}{AB} = \frac{15}{16}$ , find $\frac{ZP}{YP}$.
[b]p12.[/b] Compute the remainder when $$\sum_{1\le a,k\le 2021} a^k$$ is divided by $2022$ (in the above summation $a,k$ are integers).
[b]p13.[/b] Consider a $7\times 2$ grid of squares, each of which is equally likely to be colored either red or blue. Madeline would like to visit every square on the grid exactly once, starting on one of the top two squares and ending on one of the bottom two squares. She can move between two squares if they are adjacent or diagonally adjacent. What is the probability that Madeline may visit the squares of the grid in this way such that the sequence of colors she visits is alternating (i.e., red, blue, red,... or blue, red, blue,... )?
[b]p14.[/b] Let $ABC$ be a triangle with $AB = 8$, $BC = 10$, and $CA = 12$. Denote by $\Omega_A$ the $A$-excircle of $ABC$, and suppose that $\Omega_A$ is tangent to $\overline{AB}$ and $\overline{AC}$ at $F$ and $E$, respectively. Line $\ell \ne \overline{BC}$ is tangent to $\Omega_A$ and passes through the midpoint of $\overline{BC}$. Let $T$ be the intersection of $\overline{EF}$ and $\ell$. Compute the area of triangle $ATB$.
[b]p15.[/b] For any positive integer $n$, let $D_n$ be the set of ordered pairs of positive integers $(m,d)$ such that $d$ divides $n$ and gcd$(m,n) = 1$, $1 \le m \le n$. For any positive integers $a$, $b$, let $r(a,b)$ be the non-negative remainder when $a$ is divided by $b$. Denote by $S_n$ the sum $$S_n = \sum_{(m,d)\in D_n} r(m,d).$$ Determine the value of $S_{396}$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021 Science ON all problems, 4
Find the least positive integer which is a multiple of $13$ and all its digits are the same.
[i](Adapted from Gazeta Matematică 1/1982, Florin Nicolăită)[/i]
1996 IMO Shortlist, 4
Find all positive integers $ a$ and $ b$ for which
\[ \left \lfloor \frac{a^2}{b} \right \rfloor \plus{} \left \lfloor \frac{b^2}{a} \right \rfloor \equal{} \left \lfloor \frac{a^2 \plus{} b^2}{ab} \right \rfloor \plus{} ab.\]
2008 Germany Team Selection Test, 3
Prove there is an integer $ k$ for which $ k^3 \minus{} 36 k^2 \plus{} 51 k \minus{} 97$ is a multiple of $ 3^{2008.}$
2000 Tournament Of Towns, 5
What is the largest number $N$ for which there exist $N$ consecutive positive integers such that the sum of the digits in the $k$-th integer is divisible by $k$ for $1 \le k \le N$ ?
(S Tokarev)