This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2016 Finnish National High School Mathematics Comp, 4

How many pairs $(a, b)$ of positive integers $a,b$ solutions of the equation $(4a-b)(4b-a )=1770^n$ exist , if $n$ is a positive integer?

1997 All-Russian Olympiad Regional Round, 10.3

Natural numbers $m$ and $n$ are given. Prove that the number $2^n-1$ is divisible by the number $(2^m -1)^2$ if and only if the number $n$ is divisible by the number $m(2^m-1)$.

1994 Swedish Mathematical Competition, 4

Find all integers $m, n$ such that $2n^3 - m^3 = mn^2 + 11$.

2012 India IMO Training Camp, 2

Let $0<x<y<z<p$ be integers where $p$ is a prime. Prove that the following statements are equivalent: $(a) x^3\equiv y^3\pmod p\text{ and }x^3\equiv z^3\pmod p$ $(b) y^2\equiv zx\pmod p\text{ and }z^2\equiv xy\pmod p$

1989 AIME Problems, 9

One of Euler's conjectures was disproved in then 1960s by three American mathematicians when they showed there was a positive integer $ n$ such that \[133^5 \plus{} 110^5 \plus{} 84^5 \plus{} 27^5 \equal{} n^5.\] Find the value of $ n$.

2003 BAMO, 1

An integer is a perfect number if and only if it is equal to the sum of all of its divisors except itself. For example, $28$ is a perfect number since $28 = 1 + 2 + 4 + 7 + 14$. Let $n!$ denote the product $1\cdot 2\cdot 3\cdot ...\cdot n$, where $n$ is a positive integer. An integer is a factorial if and only if it is equal to $n!$ for some positive integer $n$. For example, $24$ is a factorial number since $24 = 4! = 1\cdot 2\cdot 3\cdot 4$. Find all perfect numbers greater than $1$ that are also factorials.

2009 AMC 8, 16

How many $ 3$-digit positive integers have digits whose product equals $ 24$? $ \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24$

2023 Indonesia TST, N

Let $P(x)$ and $Q(x)$ be polynomials of degree $p$ and $q$ respectively such that every coefficient is $1$ or $2023$. If $P(x)$ divides $Q(x)$, prove that $p+1$ divides $q+1$.

2004 India IMO Training Camp, 3

Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds $v_1$ and $v_2$ respectively, where $v_1$ and $v_2$ are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that (a) at any given time $t$, at least one of the runners is at a distance not more than $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units from the starting point. (b) there is a time $t$ such that both the runners are at least $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.

1990 Canada National Olympiad, 5

The function $f : \mathbb N \to \mathbb R$ satisfies $f(1) = 1, f(2) = 2$ and \[f (n+2) = f(n+2 - f(n+1) ) + f(n+1 - f(n) ).\] Show that $0 \leq f(n+1) - f(n) \leq 1$. Find all $n$ for which $f(n) = 1025$.

2017 All-Russian Olympiad, 2

$a,b,c$ - different natural numbers. Can we build quadratic polynomial $P(x)=kx^2+lx+m$, with $k,l,m$ are integer, $k>0$ that for some integer points it get values $a^3,b^3,c^3$ ?

2021 Iran Team Selection Test, 4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples $a,b,c$ of positive integers the following holds : $$f(ac)+f(bc)-f(c)f(ab) \ge 1$$ Proposed by [i]Mojtaba Zare[/i]

2018 MMATHS, 2

Prove that if a triangle has integer side lengths and the area (in square units) equals the perimeter (in units), then the perimeter is not a prime number.

2016 Rioplatense Mathematical Olympiad, Level 3, 6

When the natural numbers are written one after another in an increasing way, you get an infinite succession of digits $123456789101112 ....$ Denote $A_k$ the number formed by the first $k$ digits of this sequence . Prove that for all positive integer $n$ there is a positive integer $m$ which simultaneously verifies the following three conditions: (i) $n$ divides $A_m$, (ii) $n$ divides $m$, (iii) $n$ divides the sum of the digits of $A_m$.

2004 India IMO Training Camp, 2

Prove that for every positive integer $n$ there exists an $n$-digit number divisible by $5^n$ all of whose digits are odd.

2019 PUMaC Team Round, 4

What is the sum of the leading (first) digits of the integers from $ 1$ to $2019$ when the integers are written in base $3$? Give your answer in base $10$.

2022 Azerbaijan IMO TST, 2

Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers. [i]Proposed by Dorlir Ahmeti, Albania[/i]

1998 Bosnia and Herzegovina Team Selection Test, 5

Let $a$, $b$ and $c$ be integers such that $$bc+ad=1$$ $$ac+2bd=1$$ Prove that $a^2+c^2=2b^2+2d^2$

2014 Tuymaada Olympiad, 8

Let positive integers $a,\ b,\ c$ be pairwise coprime. Denote by $g(a, b, c)$ the maximum integer not representable in the form $xa+yb+zc$ with positive integral $x,\ y,\ z$. Prove that \[ g(a, b, c)\ge \sqrt{2abc}\] [i](M. Ivanov)[/i] [hide="Remarks (containing spoilers!)"] 1. It can be proven that $g(a,b,c)\ge \sqrt{3abc}$. 2. The constant $3$ is the best possible, as proved by the equation $g(3,3k+1,3k+2)=9k+5$. [/hide]

2010 Princeton University Math Competition, 1

Find the positive integer less than 18 with the most positive divisors.

2021 Winter Stars of Mathematics, 2

Given a positive integer $k,$ prove that for any integer $n \geq 20k,$ there exist $n - k$ pairwise distinct positive integers whose squares add up to $n(n + 1)(2n + 1)/6.$ [i]The Problem Selection Committee[/i]

2021 Nigerian Senior MO Round 3, 1

Find all triples of primes $(p,q,r)$ such that $p^q=2021+r^3$

2016 Junior Balkan Team Selection Tests - Romania, 3

Let $M$ be the set of natural numbers $k$ for which there exists a natural number $n$ such that $$3^n \equiv k\pmod n.$$ Prove that $M$ has infinitely many elements.

2021 AMC 10 Spring, 5

The ages of Jonie's four cousins are distinct single-digit positive integers. Two of the cousins' ages multiplied together give $24$, while the other two multiply to $30$. What is the sum of the ages of Jonie's four cousins? $\textbf{(A) }21 \qquad \textbf{(B) }22 \qquad \textbf{(C) }23 \qquad \textbf{(D) }24 \qquad \textbf{(E) }25$

2024 India National Olympiad, 3

Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$ are divisible by $p$. Prove that $p$ divides each of $a,b,c$. $\quad$ Proposed by Navilarekallu Tejaswi