Found problems: 15460
2006 AMC 10, 22
Two farmers agree that pigs are worth $ \$300$ and that goats are worth $ \$210$. When one farmer owes the other money, he pays the debt in pigs or goats, with ``change'' received in the form of goats or pigs as necessary. (For example, a $ \$390$ debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?
$ \textbf{(A) } \$5\qquad \textbf{(B) } \$10\qquad \textbf{(C) } \$30\qquad \textbf{(D) } \$90\qquad \textbf{(E) } \$210$
2006 All-Russian Olympiad, 2
The sum and the product of two purely periodic decimal fractions $a$ and $b$ are purely periodic decimal fractions of period length $T$. Show that the lengths of the periods of the fractions $a$ and $b$ are not greater than $T$.
[i]Note.[/i] A [i]purely periodic decimal fraction[/i] is a periodic decimal fraction without a non-periodic starting part.
2023 Bundeswettbewerb Mathematik, 4
Given a real number $\alpha$ in whose decimal representation $\alpha=0,a_1a_2a_3\dots$ each decimal digit $a_i$ $(i=1,2,3,\dots)$ is a prime number. The decimal digits are arranged along the path indicated by arrows in the accompanying figure, which can be thought of as continuing infinitely to the right and downward. For each $m\geq 1$, the decimal representation of a real number $z_m$ is formed by writing before the decimal point the digit 0 and after the decimal point the sequence of digits of the $m$-th row from the top read from left to right from the adjacent arrangement. In an analogous way, for all $n\geq 1$, the real numbers $s_n$ are formed with the digits of the $n$-th column from the left to be read from top to bottom. For example, $z_3=0,a_5a_6a_7a_{12}a_{23}a_{28}\dots$ and $s_2=0,a_2a_3a_6a_{15}a_{18}a_{35}\dots$.
Show:
(a) If $\alpha$ is rational, then all $z_m$ and all $s_n$ are rational.
(b) The converse of the statement formulated in (a) is false.
1975 Chisinau City MO, 87
Prove that among any $100$ natural numbers there are two numbers whose difference is divisible by $99$.
2022 Chile National Olympiad, 6
Determine if there is a power of 5 that begins with 2022.
2010 Purple Comet Problems, 17
Alan, Barb, Cory, and Doug are on the golf team, Doug, Emma, Fran, and Greg are on the swim team, and Greg, Hope, Inga, and Alan are on the tennis team. These nine people sit in a circle in random order. The probability that no two people from the same team sit next to each other is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$
2012 Purple Comet Problems, 30
The diagram below shows four regular hexagons each with side length $1$ meter attached to the sides of a square. This figure is drawn onto a thin sheet of metal and cut out. The hexagons are then bent upward along the sides of the square so that $A_1$ meets $A_2$, $B_1$ meets $B_2$, $C_1$ meets $C_2$, and $D_1$ meets $D_2$. If the resulting dish is filled with water, the water will rise to the height of the corner where the $A_1$ and $A_2$ meet. there are relatively prime positive integers $m$ and $n$ so that the number of cubic meters of water the dish will hold is $\sqrt{\frac{m}{n}}$. Find $m+n$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(7cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.3, xmax = 14.52, ymin = -8.3, ymax = 6.3; /* image dimensions */
draw((0,1)--(0,0)--(1,0)--(1,1)--cycle);
draw((1,1)--(1,0)--(1.87,-0.5)--(2.73,0)--(2.73,1)--(1.87,1.5)--cycle);
draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle);
draw((0,0)--(1,0)--(1.5,-0.87)--(1,-1.73)--(0,-1.73)--(-0.5,-0.87)--cycle);
draw((0,1)--(0,0)--(-0.87,-0.5)--(-1.73,0)--(-1.73,1)--(-0.87,1.5)--cycle);
/* draw figures */
draw((0,1)--(0,0));
draw((0,0)--(1,0));
draw((1,0)--(1,1));
draw((1,1)--(0,1));
draw((1,1)--(1,0));
draw((1,0)--(1.87,-0.5));
draw((1.87,-0.5)--(2.73,0));
draw((2.73,0)--(2.73,1));
draw((2.73,1)--(1.87,1.5));
draw((1.87,1.5)--(1,1));
draw((0,1)--(1,1));
draw((1,1)--(1.5,1.87));
draw((1.5,1.87)--(1,2.73));
draw((1,2.73)--(0,2.73));
draw((0,2.73)--(-0.5,1.87));
draw((-0.5,1.87)--(0,1));
/* dots and labels */
dot((1.87,-0.5),dotstyle);
label("$C_1$", (1.72,-0.1), NE * labelscalefactor);
dot((1.87,1.5),dotstyle);
label("$B_2$", (1.76,1.04), NE * labelscalefactor);
dot((1.5,1.87),dotstyle);
label("$B_1$", (0.96,1.8), NE * labelscalefactor);
dot((-0.5,1.87),dotstyle);
label("$A_2$", (-0.26,1.78), NE * labelscalefactor);
dot((-0.87,1.5),dotstyle);
label("$A_1$", (-0.96,1.08), NE * labelscalefactor);
dot((-0.87,-0.5),dotstyle);
label("$D_2$", (-1.02,-0.18), NE * labelscalefactor);
dot((-0.5,-0.87),dotstyle);
label("$D_1$", (-0.22,-0.96), NE * labelscalefactor);
dot((1.5,-0.87),dotstyle);
label("$C_2$", (0.9,-0.94), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
1957 Moscow Mathematical Olympiad, 355
a) A student takes a subway to an Olympiad, pays one ruble and gets his change. Prove that if he takes a tram (street car) on his way home, he will have enough coins to pay the fare without change.
b) A student is going to a club. (S)he takes a tram, pays one ruble and gets the change. Prove that on the way back by a tram (s)he will be able to pay the fare without any need to change.
Note: In $1957$, the price of a subway ticket was $50$ kopeks, that of a tram ticket $30$ kopeks, the denominations of the coins were $1, 2, 3, 5, 10, 15$, and $20$ kopeks. ($1$ rouble = $100$ kopeks.)
2021 Kyiv Mathematical Festival, 4
Find all collections of $63$ integer numbers such that the square of each number is equal to the sum of all other numbers, and not all the numbers are equal. (O. Rudenko)
2014 Contests, 3
Find all positive integers $n$ so that $$17^n +9^{n^2} = 23^n +3^{n^2} .$$
2010 Puerto Rico Team Selection Test, 2
Find two three-digit numbers $x$ and $y$ such that the sum of all other three digit numbers is equal to $600x$.
MathLinks Contest 7th, 1.2
Let $ a,b,c,d$ be four distinct positive integers in arithmetic progression. Prove that $ abcd$ is not a perfect square.
OIFMAT I 2010, 4
Let $ a_1 <a_2 <... <a_n $ consecutive positive integers (with $ n> 2 $). A grasshopper jumps on the real line, starting at point $ 0 $ and jumping $ n $ to the right with lengths $ a_1 $, $ a_2 $, ..., $ a_n $, in some order (each length occupies exactly once), ending your tour at the $ 2010 $ point. Find all the possible values $ n $ of jumps that the grasshopper could have made.
2006 Greece National Olympiad, 2
Let $n$ be a positive integer. Prove that the equation
\[x+y+\frac{1}{x}+\frac{1}{y}=3n\]
does not have solutions in positive rational numbers.
2017 China Team Selection Test, 4
Given integer $d>1,m$,prove that there exists integer $k>l>0$, such that $$(2^{2^k}+d,2^{2^l}+d)>m.$$
2015 Korea - Final Round, 5
For a fixed positive integer $k$, there are two sequences $A_n$ and $B_n$.
They are defined inductively, by the following recurrences.
$A_1 = k$, $A_2 = k$, $A_{n+2} = A_{n}A_{n+1}$
$B_1 = 1$, $B_2 = k$, $B_{n+2} = \frac{B^3_{n+1}+1}{B_{n}}$
Prove that for all positive integers $n$, $A_{2n}B_{n+3}$ is an integer.
2005 India IMO Training Camp, 2
Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying
\[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\]
for any two positive integers $ m$ and $ n$.
[i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers:
$ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$.
By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$).
[i]Proposed by Mohsen Jamali, Iran[/i]
2019 Regional Olympiad of Mexico Southeast, 1
Found the smaller multiple of $2019$ of the form $abcabc\dots abc$, where $a,b$ and $c$ are digits.
2012 Germany Team Selection Test, 1
Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
[i]Proposed by Luxembourg[/i]
2004 Vietnam Team Selection Test, 1
Let us consider a set $S = \{ a_1 < a_2 < \ldots < a_{2004}\}$, satisfying the following properties: $f(a_i) < 2003$ and $f(a_i) = f(a_j) \quad \forall i, j$ from $\{1, 2,\ldots , 2004\}$, where $f(a_i)$ denotes number of elements which are relatively prime with $a_i$. Find the least positive integer $k$ for which in every $k$-subset of $S$, having the above mentioned properties there are two distinct elements with greatest common divisor greater than 1.
2017 Saint Petersburg Mathematical Olympiad, 4
The numbers from $1$ to $2000^2$ were written on a board. Vasya choose $2000$ of them whose sum of them equal to two thousandth of the sum of all numbers. Proof that his friend, Petya, will be able to color each of the remaining numbers by one of other $1999$ colors so that the sum of numbers with each of total $2000$ colors are the same.
2003 Federal Math Competition of S&M, Problem 1
Prove that the number $\left\lfloor\left(5+\sqrt{35}\right)^{2n-1}\right\rfloor$ is divisible by $10^n$ for each $n\in\mathbb N$.
2007 Gheorghe Vranceanu, 1
Let $ \left( x_n\right)_{n\ge 1} $ be a sequence of integers defined recursively as $ x_{n+2}=5x_{n+1}-x_n. $
Prove that $ \left( x_n\right)_{n\ge 1} $ has a subsequence whose terms are multiples of $ 22 $ if $ \left( x_n\right)_{n\ge 1} $ has a term that is multiple of $ 22. $
LMT Guts Rounds, 2021 S
[u]Round 1[/u]
[b]p1.[/b] How many ways are there to arrange the letters in the word $NEVERLAND$ such that the $2$ $N$’s are adjacent and the two $E$’s are adjacent? Assume that letters that appear the same are not distinct.
[b]p2.[/b] In rectangle $ABCD$, $E$ and $F$ are on $AB$ and $CD$, respectively such that $DE = EF = FB$ and $\angle CDE = 45^o$. Find $AB + AD$ given that $AB$ and $AD$ are relatively prime positive integers.
[b]p3.[/b] Maisy Airlines sees $n$ takeoffs per day. Find the minimum value of $n$ such that theremust exist two planes that take off within aminute of each other.
[u]Round 2[/u]
[b]p4.[/b] Nick is mixing two solutions. He has $100$ mL of a solution that is $30\%$ $X$ and $400$ mL of a solution that is $10\%$ $X$. If he combines the two, what percent $X$ is the final solution?
[b]p5.[/b] Find the number of ordered pairs $(a,b)$, where $a$ and $b$ are positive integers, such that $$\frac{1}{a}+\frac{2}{b}=\frac{1}{12}.$$
[b]p6.[/b] $25$ balls are arranged in a $5$ by $5$ square. Four of the balls are randomly removed from the square. Given that the probability that the square can be rotated $180^o$ and still maintain the same configuration can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime, find $m+n$.
[u]Round 3[/u]
[b]p7.[/b] Maisy the ant is on corner $A$ of a $13\times 13\times 13$ box. She needs to get to the opposite corner called $B$. Maisy can only walk along the surface of the cube and takes the path that covers the least distance. Let $C$ and $D$ be the possible points where she turns on her path. Find $AC^2 + AD^2 +BC^2 +BD^2 - AB^2 -CD^2$.
[b]p8.[/b] Maisyton has recently built $5$ intersections. Some intersections will get a park and some of those that get a park will also get a chess school. Find how many different ways this can happen.
[b]p9.[/b] Let $f (x) = 2x -1$. Find the value of $x$ that minimizes $| f ( f ( f ( f ( f (x)))))-2020|$.
[u]Round 4[/u]
[b]p10.[/b] Triangle $ABC$ is isosceles, with $AB = BC > AC$. Let the angle bisector of $\angle A$ intersect side $\overline{BC}$ at point $D$, and let the altitude from $A$ intersect side $\overline{BC}$ at point $E$. If $\angle A = \angle C= x^o$, then the measure of $\angle DAE$ can be expressed as $(ax -b)^o$, for some constants $a$ and $b$. Find $ab$.
[b]p11[/b]. Maisy randomly chooses $4$ integers $w$, $x$, $y$, and $z$, where $w, x, y, z \in \{1,2,3, ... ,2019,2020\}$. Given that the probability that $w^2 + x^2 + y^2 + z^2$ is not divisible by $4$ is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, find $m+n$.
[b]p12.[/b] Evaluate $$-\log_4 \left(\log_2 \left(\sqrt{\sqrt{\sqrt{...\sqrt{16}}}} \right)\right),$$ where there are $100$ square root signs.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3166476p28814111]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166480p28814155]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
MMPC Part II 1996 - 2019, 2002
[b]p1. [/b](a) Show that for every positive integer $m > 1$, there are positive integers $x$ and $y$ such that $x^2 - y^2 = m^3$.
(b) Find all pairs of positive integers $(x, y)$ such that $x^6 = y^2 + 127$.
[b]p2.[/b] (a) Let $P(x)$ be a polynomial with integer coefficients. Suppose that $P(0)$ is an odd integer and that $P(1)$ is also an odd integer. Show that if $c$ is an integer then $P(c)$ is not equal to $0$.
(b) Let P(x) be a polynomial with integer coefficients. Suppose that $P(1,000) = 1,000$ and $P(2,000) = 2,000.$ Explain why $P(3,000)$ cannot be equal to $1,000$.
[b]p3.[/b] Triangle $\vartriangle ABC$ is created from points $A(0, 0)$, $B(1, 0)$ and $C(1/2, 2)$. Let $q, r$, and $s$ be numbers such that $0 < q < 1/2 < s < 1$, and $q < r < s$. Let D be the point on $AC$ which has $x$-coordinate $q$, $E$ be the point on AB which has $x$-coordinate $r$, and $F$ be the point on $BC$ that has $x$-coordinate $s$.
(a) Find the area of triangle $\vartriangle DEF$ in terms of $q, r$, and $s$.
(b) If $r = 1/2$, prove that at least one of the triangles $\vartriangle ADE$, $\vartriangle CDF$, or $\vartriangle BEF$ has an area of at least $1/4$.
[b]p4.[/b] In the Gregorian calendar:
(i) years not divisible by $4$ are common years,
(ii) years divisible by $4$ but not by $100$ are leap years,
(iii) years divisible by $100$ but not by $400$ are common years,
(iv) years divisible by $400$ are leap years,
(v) a leap year contains $366$ days, a common year $365$ days.
From the information above:
(a) Find the number of common years and leap years in $400$ consecutive Gregorian years. Show that $400$ consecutive Gregorian years consists of an integral number of weeks.
(b) Prove that the probability that Christmas falls on a Wednesday is not equal to $1/7$.
[b]p5.[/b] Each of the first $13$ letters of the alphabet is written on the back of a card and the $13$ cards are placed in a row in the order $$A,B,C,D,E, F, G,H, I, J,K, L,M$$
The cards are then turned over so that the letters are face down. The cards are rearranged and again placed in a row, but of course they may be in a different order. They are rearranged and placed in a row a second time and both rearrangements were performed exactly the same way. When the cards are turned over the letters are in the order $$B,M, A,H, G,C, F,E,D, L, I,K, J$$ What was the order of the letters after the cards were rearranged the first time?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].