Found problems: 15460
2016 PUMaC Team, 12
King Tin writes the first $n$ perfect squares on the royal chalkboard, but he omits the first (so for n = $3$, he writes $4$ and $9$). His son, Prince Tin, comes along and repeats the following process until only one number remains:
[i]He erases the two greatest numbers still on the board, calls them a and b, and writes the value of $\frac{ab-1}{a+b-2}$ on the board.
[/i]Let $S(n)$ be the last number that Prince Tin writes on the board. Let $\lim_{n\to \infty} S(n) = r$, meaning that $r$ is the unique number such that for every $\epsilon > 0$ there exists a positive integer $N$ so that $|S(n) - r| < \epsilon$ for all $n > N$. If $r$ can be written in simplest form as $\frac{m}{n}$, find $m + n$.
Math Hour Olympiad, Grades 8-10, 2012
[u]Round 1 [/u]
[b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests.
One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor.
Now Pooh can tell how many knights are at the table. Can you?
[b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.)
[img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img]
[b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$.
[b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members.
Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one.
Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop?
[b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet?
[u]Round 2 [/u]
[b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight.
[b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2025 Poland - First Round, 9
Positive integers $m, n$ are given such that $\sqrt{2}<\frac{m}{n}<\sqrt{2}+\frac{1}{2}$ and $m$ is even. Prove that there exist positive integers $k<m$ and $l<n$ such that
$$|\frac{k}{l}-\sqrt{2}|<\frac{m}{n}-\sqrt{2}$$
Mid-Michigan MO, Grades 10-12, 2015
[b]p1.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square?
[b]p2.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from $1$ to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number $3$? The total number of all obtained points is $264$.
[b]p2.[/b] There are exactly $n$ students in a high school. Girls send messages to boys. The first girl sent messages to $5$ boys, the second to $7$ boys, the third to $6$ boys, the fourth to $8$ boys, the fifth to $7$ boys, the sixth to $9$ boys, the seventh to $8$, etc. The last girl sent messages to all the boys. Prove that $n$ is divisible by $3$.
[b]p4.[/b] In what minimal number of triangles can one cut a $25 \times 12$ rectangle in such a way that one can tile by these triangles a $20 \times 15$ rectangle.
[b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Auckland Mathematical Olympiad, 2
Consider a positive integer, $N = 9 + 99 + 999 + ... +\underbrace{999...9}_{2018}$.
How many times does the digit $1$ occur in its decimal representation?
1980 Brazil National Olympiad, 2
Show that for any positive integer $n > 2$ we can find $n$ distinct positive integers such that the sum of their reciprocals is $1$.
2015 Puerto Rico Team Selection Test, 4
Let $n$ be a positive integer. Find as many as possible zeros as last digits the following expression: $1^n + 2^n + 3^n + 4^n$.
2015 Azerbaijan JBMO TST, 4
Prove that there are not intgers $a$ and $b$ with conditions,
i) $16a-9b$ is a prime number.
ii) $ab$ is a perfect square.
iii) $a+b$ is also perfect square.
2019 VJIMC, 1
Let $\{a_n \}_{n=0}^{\infty}$ be a sequence given recrusively such that $a_0=1$ and $$a_{n+1}=\frac{7a_n+\sqrt{45a_n^2-36}}{2}$$ for $n\geq 0$
Show that :
a) $a_n$ is a positive integer.
b) $a_n a_{n+1}-1$ is a square of an integer.
[i]Proposed by Stefan Gyurki (Matej Bel University, Banska Bystrica).[/i]
2012 Princeton University Math Competition, B1
Let $q$ be a fixed odd prime. A prime $p$ is said to be [i]orange [/i] if for every integer $a$ there exists an integer $r$ such that $r^q \equiv a$ (mod $p$). Prove that there are infinitely many [i]orange [/i] primes.
2008 IMO, 3
Prove that there are infinitely many positive integers $ n$ such that $ n^{2} \plus{} 1$ has a prime divisor greater than $ 2n \plus{} \sqrt {2n}$.
[i]Author: Kestutis Cesnavicius, Lithuania[/i]
1963 German National Olympiad, 1
a) Prove that when you divide any prime number by $30$, the remainder is either $1$ or is a prime number!
b) Does this also apply when dividing a prime number by $60$? Justify your answer!
2011 ISI B.Math Entrance Exam, 5
Consider a sequence denoted by $F_n$ of non-square numbers . $F_1=2$,$F_2=3$,$F_3=5$ and so on . Now , if $m^2\leq F_n<(m+1)^2$ . Then prove that $m$ is the integer closest to $\sqrt{n}$.
2019 Czech-Austrian-Polish-Slovak Match, 2
We consider positive integers $n$ having at least six positive divisors. Let the positive divisors of $n$ be arranged in a sequence $(d_i)_{1\le i\le k}$ with $$1=d_1<d_2<\dots <d_k=n\quad (k\ge 6).$$
Find all positive integers $n$ such that $$n=d_5^2+d_6^2.$$
2001 Paraguay Mathematical Olympiad, 3
Find a $10$-digit number, in which no digit is zero, that is divisible by the sum of their digits.
2000 Moldova National Olympiad, Problem 6
A natural number $n\ge5$ leaves the remainder $2$ when divided by $3$. Prove that the square of $n$ is not a sum of a prime number and a perfect square.
2019 Nigeria Senior MO Round 2, 1
Prove that every prime of the form $4k+1$ is the hypotenuse of a rectangular triangle with integer sides.
2021 CMIMC, 1.6
Find the remainder when $$\left \lfloor \frac{149^{151} + 151^{149}}{22499}\right \rfloor$$ is divided by $10^4$.
[i]Proposed by Vijay Srinivasan[/i]
2024 Malaysian Squad Selection Test, 2
A finite sequence of decimal digits from $\{0,1,\cdots, 9\}$ is said to be [i]common[/i] if for each sufficiently large positive integer $n$, there exists a positive integer $m$ such that the expansion of $n$ in base $m$ ends with this sequence of digits.
For example, $0$ is common because for any large $n$, the expansion of $n$ in base $n$ is $10$, whereas $00$ is not common because for any squarefree $n$, the expansion of $n$ in any base cannot end with $00$.
Determine all common sequences.
[i]Proposed by Wong Jer Ren[/i]
2024 India Iran Friendly Math Competition, 4
Prove that there are no integers $x, y, z$ satisfying the equation $$x^2+y^2-z^2=xyz-2.$$
[i]Proposed by Navid Safaei[/i]
1957 Moscow Mathematical Olympiad, 348
A snail crawls over a table at a constant speed. Every $15$ minutes it turns by $90^o$, and in between these turns it crawls along a straight line. Prove that it can return to the starting point only in an integer number of hours.
2025 Malaysian APMO Camp Selection Test, 4
Find all pairs of distinct primes $(p,q)$ such that $p$ and $q$ are both prime factors of $p^3+q^2+1$, and are the only such prime factors.
[i]Proposed by Takeda Shigenori[/i]
2006 France Team Selection Test, 3
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
[i]Proposed by Mohsen Jamali, Iran[/i]
2007 Peru MO (ONEM), 3
We say that a natural number of at least two digits $E$ is [i]special [/i] if each time two adjacent digits of $E$ are added, a divisor of $E$ is obtained. For example, $2124$ is special, since the numbers $2 + 1$, $1 + 2$ and $2 + 4$ are all divisors of $2124$. Find the largest value of $n$ for which there exist $n$ consecutive natural numbers such that they are all special.
2014 China Team Selection Test, 1
Prove that for any positive integers $k$ and $N$, \[\left(\frac{1}{N}\sum\limits_{n=1}^{N}(\omega (n))^k\right)^{\frac{1}{k}}\leq k+\sum\limits_{q\leq N}\frac{1}{q},\] where $\sum\limits_{q\leq N}\frac{1}{q}$ is the summation over of prime powers $q\leq N$ (including $q=1$).
Note: For integer $n>1$, $\omega (n)$ denotes number of distinct prime factors of $n$, and $\omega (1)=0$.