Found problems: 15460
2024 Serbia JBMO TST, 1
Find all non-negative integers $x, y$ and primes $p$ such that $$3^x+p^2=7 \cdot 2^y.$$
2012 EGMO, 2
Let $n$ be a positive integer. Find the greatest possible integer $m$, in terms of $n$, with the following property: a table with $m$ rows and $n$ columns can be filled with real numbers in such a manner that for any two different rows $\left[ {{a_1},{a_2},\ldots,{a_n}}\right]$ and $\left[ {{b_1},{b_2},\ldots,{b_n}} \right]$ the following holds: \[\max\left( {\left| {{a_1} - {b_1}} \right|,\left| {{a_2} - {b_2}} \right|,...,\left| {{a_n} - {b_n}} \right|} \right) = 1\]
[i]Poland (Tomasz Kobos)[/i]
2022 Romania Team Selection Test, 2
Fix a nonnegative integer $a_0$ to define a sequence of integers $a_0,a_1,\ldots$ by letting $a_k,k\geq 1$ be the smallest integer (strictly) greater than $a_{k-1}$ making $a_{k-1}+a_k{}$ into a perfect square. Let $S{}$ be the set of positive integers not expressible as the difference of two terms of the sequence $(a_k)_{k\geq 0}.$ Prove that $S$ is finite and determine its size in terms of $a_0.$
2014 Taiwan TST Round 2, 3
Fix an integer $k>2$. Two players, called Ana and Banana, play the following game of numbers. Initially, some integer $n \ge k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number $m$ just written on the blackboard and replaces it by some number $m'$ with $k \le m' < m$ that is coprime to $m$. The first player who cannot move anymore loses.
An integer $n \ge k $ is called good if Banana has a winning strategy when the initial number is $n$, and bad otherwise.
Consider two integers $n,n' \ge k$ with the property that each prime number $p \le k$ divides $n$ if and only if it divides $n'$. Prove that either both $n$ and $n'$ are good or both are bad.
2015 AMC 10, 15
Consider the set of all fractions $\tfrac{x}{y},$ where $x$ and $y$ are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by $1$, the value of the fraction is increased by $10\%$?
$ \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinitely many} $
DMM Individual Rounds, 2002 Tie
[b]p1.[/b] Suppose $a$, $b$ and $c$ are integers such that $c$ divides $a^n + b^n$ for all integers, $n \ge 1$. If the greatest common divisor of $a$ and $b$ is $7$, what is the largest possible value of $c$?
[b]p2.[/b] Consider a sequence of points $\{P_1, P_2,...\}$ on a circle w with the property that $\overline{P_{i+1}P_{i+2}}$ is parallel to the tangent line through $P_i$ for each $i \ge 1$. If $P_5 = P_1$, what is the largest possible angle formed by $P_1P_3P_2$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Irish Math Olympiad, 3
Find all positive integers $n$ for which both $837 + n$ and $837 - n$ are cubes of positive integers.
LMT Team Rounds 2010-20, 2019 Fall
[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten?
[b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following:
$\bullet$ $n$ is a square number.
$\bullet$ $n$ is one more than a multiple of $5$.
$\bullet$ $n$ is even.
[b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both?
[b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure?
[img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img]
[b]p5.[/b] For distinct digits $A, B$, and $ C$:
$$\begin{tabular}{cccc}
& A & A \\
& B & B \\
+ & C & C \\
\hline
A & B & C \\
\end{tabular}$$ Compute $A \cdot B \cdot C$.
[b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive?
[b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ .
[b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates?
[b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$?
[b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year?
[b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$.
[b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$.
[b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$
Find $abc -\frac{1}{abc}$ .
[b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows:
$\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$.
$\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$.
Determine the total area enclosed by all $\omega_i$ for $i \ge 0$.
[b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$.
[b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ .
[b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white?
[b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once?
[b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ .
[b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese?
PS. You had better use hide for answers.
1966 Bulgaria National Olympiad, Problem 1
Prove that the equation
$$3x(x-3y)=y^2+z^2$$doesn't have any integer solutions except $x=0,y=0,z=0$.
2011 Math Prize For Girls Problems, 18
The polynomial $P$ is a quadratic with integer coefficients. For every positive integer $n$, the integers $P(n)$ and $P(P(n))$ are relatively prime to $n$. If $P(3) = 89$, what is the value of $P(10)$?
1982 Yugoslav Team Selection Test, Problem 1
Let $p>2$ be a prime number. For $k=1,2,\ldots,p-1$ we denote by $a_k$ the remainder when $k^p$ is divided by $p^2$. Prove that
$$a_1+a_2+\ldots+a_{p-1}=\frac{p^3-p^2}2.$$
2010 Dutch Mathematical Olympiad, 4
(a) Determine all pairs $(x, y)$ of (real) numbers with $0 < x < 1$ and $0 <y < 1$ for which $x + 3y$ and $3x + y$ are both integer. An example is $(x,y) =( \frac{8}{3}, \frac{7}{8}) $, because $ x+3y =\frac38 +\frac{21}{8} =\frac{24}{8} = 3$ and $ 3x+y = \frac98 + \frac78 =\frac{16}{8} = 2$.
(b) Determine the integer $m > 2$ for which there are exactly $119$ pairs $(x,y)$ with $0 < x < 1$ and $0 < y < 1$ such that $x + my$ and $mx + y$ are integers.
Remark: if $u \ne v,$ the pairs $(u, v)$ and $(v, u)$ are different.
1992 IMO Longlists, 54
Suppose that $n > m \geq 1$ are integers such that the string of digits $143$ occurs somewhere in the decimal representation of the fraction $\frac{m}{n}$. Prove that $n > 125.$
2016 Dutch BxMO TST, 1
For a positive integer $n$ that is not a power of two, we define $t(n)$ as the greatest odd divisor of $n$ and $r(n)$ as the smallest positive odd divisor of $n$ unequal to $1$. Determine all positive integers $n$ that are not a power of two and for which we have $n = 3t(n) + 5r(n)$.
2014 NZMOC Camp Selection Problems, 3
Find all pairs $(x, y)$ of positive integers such that $(x + y)(x^2 + 9y)$ is the cube of a prime number.
2020 Saint Petersburg Mathematical Olympiad, 4.
The sum $\frac{2}{3\cdot 6} +\frac{2\cdot 5}{3\cdot 6\cdot 9} +\ldots +\frac{2\cdot5\cdot \ldots \cdot 2015}{3\cdot 6\cdot 9\cdot \ldots \cdot 2019}$ is written as a decimal number. Find the first digit after the decimal point.
2015 Balkan MO Shortlist, N6
Prove that among $20$ consecutive positive integers there is an integer $d$ such that for every positive integer $n$ the following inequality holds
$$n \sqrt{d} \left\{n \sqrt {d} \right \} > \dfrac{5}{2}$$
where by $\left \{x \right \}$ denotes the fractional part of the real number $x$. The fractional part of the real number $x$ is defined as the difference between the largest integer that is less than or equal to $x$ to the actual number $x$.
[i](Serbia)[/i]
1985 AIME Problems, 13
The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.
2025 China National Olympiad, 3
Let \(a_1, a_2, \ldots, a_n\) be integers such that \(a_1 > a_2 > \cdots > a_n > 1\). Let \(M = \operatorname{lcm} \left( a_1, a_2, \ldots, a_n \right)\). For any finite nonempty set $X$ of positive integers, define \[ f(X) = \min_{1 \leqslant i \leqslant n} \sum_{x \in X} \left\{ \frac{x}{a_i} \right\}. \] Such a set $X$ is called [i]minimal[/i] if for every proper subset $Y$ of it, $f(Y) < f(X)$ always holds.
Suppose $X$ is minimal and $f(X) \geqslant \frac{2}{a_n}$. Prove that \[ |X| \leqslant f(X) \cdot M. \]
Kettering MO, 2018
[b]p1.[/b] Solve the equation: $\sqrt{x} +\sqrt{x + 1} - \sqrt{x + 2} = 0$.
[b]p2.[/b] Solve the inequality: $\ln (x^2 + 3x + 2) \le 0$.
[b]p3.[/b] In the trapezoid $ABCD$ ($AD \parallel BC$) $|AD|+|AB| = |BC|+|CD|$. Find the ratio of the length of the sides $AB$ and $CD$ ($|AB|/|CD|$).
[b]p4.[/b] Gollum gave Bilbo a new riddle. He put $64$ stones that are either white or black on an $8 \times 8$ chess board (one piece per each of $64$ squares). At every move Bilbo can replace all stones of any horizontal or vertical row by stones of the opposite color (white by black and black by white). Bilbo can make as many moves as he needs. Bilbo needs to get a position when in every horizontal and in every vertical row the number of white stones is greater than or equal to the number of black stones. Can Bilbo solve the riddle and what should be his solution?
[b]p5.[/b] Two trolls Tom and Bert caught Bilbo and offered him a game. Each player got a bag with white, yellow, and black stones. The game started with Tom putting some number of stones from his bag on the table, then Bert added some number of stones from his bag, and then Bilbo added some stones from his bag. After that three players started making moves. At each move a player chooses two stones of different colors, takes them away from the table, and puts on the table a stone of the color different from the colors of chosen stones. Game ends when stones of one color only remain on the table. If the remaining stones are white Tom wins and eats Bilbo, if they are yellow, Bert wins and eats Bilbo, if they are black, Bilbo wins and is set free. Can you help Bilbo to save his life by offering him a winning strategy?
[b]p6.[/b] There are four roads in Mirkwood that are straight lines. Bilbo, Gandalf, Legolas, and Thorin were travelling along these roads, each along a different road, at a different constant speed. During their trips Bilbo met Gandalf, and both Bilbo and Gandalf met Legolas and Thorin, but neither three of them met at the same time. When meeting they did not stop and did not change the road, the speed, and the direction. Did Legolas meet Thorin? Justify your answer.
PS. You should use hide for answers.
2015 Caucasus Mathematical Olympiad, 1
Does there exist a four-digit positive integer with different non-zero digits, which has the following property: if we add the same number written in the reverse order, then we get a number divisible by $101$?
2000 All-Russian Olympiad Regional Round, 10.1
$2000$ numbers are considered: $11, 101, 1001, . . $. Prove that at least $99\%$ of these numbers are composite.
2018 Istmo Centroamericano MO, 4
Let $t$ be an integer. Suppose the equation $$x^2 + (4t - 1) x + 4t^2 = 0$$ has at least one positive integer solution $n$. Show that $n$ is a perfect square.
1967 IMO Longlists, 38
Does there exist an integer such that its cube is equal to $3n^2 + 3n + 7,$ where $n$ is an integer.
2021 Thailand TSTST, 1
For each positive integer $n$, let $\rho(n)$ be the number of positive divisors of $n$ with exactly the same set of prime divisors as $n$. Show that, for any positive integer $m$, there exists a positive integer $n$ such that $\rho(202^n+1)\geq m.$