This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1960 Poland - Second Round, 4

Prove that if $ n $ is a non-negative integer, then number $$ 2^{n+2} + 3^{2n+1}$$ is divisible by $7$.

2019 PUMaC Algebra B, 4

Let $f(x)=x^2+4x+2$. Let $r$ be the difference between the largest and smallest real solutions of the equation $f(f(f(f(x))))=0$. Then $r=a^{\frac{p}{q}}$ for some positive integers $a$, $p$, $q$ so $a$ is square-free and $p,q$ are relatively prime positive integers. Compute $a+p+q$.

2013 Hong kong National Olympiad, 2

For any positive integer $a$, define $M(a)$ to be the number of positive integers $b$ for which $a+b$ divides $ab$. Find all integer(s) $a$ with $1\le a\le 2013$ such that $M(a)$ attains the largest possible value in the range of $a$.

1973 All Soviet Union Mathematical Olympiad, 175

Prove that $9$-digit number, that contains all the decimal digits except zero and does not ends with $5$ can not be exact square.

2011 AMC 10, 23

What is the hundreds digit of $2011^{2011}$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9 $

2020 Durer Math Competition Finals, 6

Positive integers $a, b$ and $c$ are all less than $2020$. We know that $a$ divides $b + c$, $b$ divides $a + c$ and $c$ divides $a + b$. How many such ordered triples $(a, b, c)$ are there? Note: In an ordered triple, the order of the numbers matters, so the ordered triple $(0, 1, 2)$ is not the same as the ordered triple $(2, 0, 1)$.

2022 South East Mathematical Olympiad, 3

If $x_i$ is an integer greater than 1, let $f(x_i)$ be the greatest prime factor of $x_i,x_{i+1} =x_i-f(x_i)$ ($i\ge 0$ and i is an integer). (1) Prove that for any integer $x_0$ greater than 1, there exists a natural number$k(x_0)$, such that $x_{k(x_0)+1}=0$ Grade 10: (2) Let $V_{(x_0)}$ be the number of different numbers in $f(x_0),f(x_1),\cdots,f(x_{k(x_0)})$. Find the largest number in $V(2),V(3),\cdots,V(781)$ and give reasons. Note: Bai Lu Zhou Academy was founded in 1241 and has a history of 781 years. Grade 11: (2) Let $V_{(x_0)}$ be the number of different numbers in $f(x_0),f(x_1),\cdots,f(x_{k(x_0)})$. Find the largest number in $V(2),V(3),\cdots,V(2022)$ and give reasons.

2009 Baltic Way, 9

Determine all positive integers $n$ for which $2^{n+1}-n^2$ is a prime number.

1982 Kurschak Competition, 2

Prove that for any integer $k > 2$, there exist infinitely many positive integers $n$ such that the least common multiple of $n$, $n + 1$,$...$, $n + k - 1$ is greater than the least common multiple of $n + 1$,$n + 2$,$...$, $n + k$.

2020 New Zealand MO, 4

Determine all prime numbers $p$ such that $p^2 - 6$ and $p^2 + 6$ are both prime numbers.

1976 Spain Mathematical Olympiad, 4

Show that the expression $$\frac{n^5 -5n^3 + 4n}{n + 2}$$ where n is any integer, it is always divisible by $24$.

2022 SAFEST Olympiad, 1

Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?

2013 AIME Problems, 2

Find the number of five-digit positive integers, $n$, that satisfy the following conditions: (a) the number $n$ is divisible by $5$, (b) the first and last digits of $n$ are equal, and (c) the sum of the digits of $n$ is divisible by $5$.

1990 USAMO, 3

Suppose that necklace $\, A \,$ has 14 beads and necklace $\, B \,$ has 19. Prove that for any odd integer $n \geq 1$, there is a way to number each of the 33 beads with an integer from the sequence \[ \{ n, n+1, n+2, \dots, n+32 \} \] so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a ``necklace'' is viewed as a circle in which each bead is adjacent to two other beads.)

2002 Germany Team Selection Test, 3

Determine all $(x,y) \in \mathbb{N}^2$ which satisfy $x^{2y} + (x+1)^{2y} = (x+2)^{2y}.$

1988 All Soviet Union Mathematical Olympiad, 471

Find all positive integers $n$ satisfying $\left(1 +\frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{1998}\right)^{1998}$.

2007 Danube Mathematical Competition, 4

Let $ a,n$ be positive integers such that $ a\ge(n\minus{}1)!$. Prove that there exist $ n$ [i]distinct[/i] prime numbers $ p_1,\ldots,p_n$ so that $ p_i|a\plus{}i$, for all $ i\equal{}\overline{1,\ldots,n}$.

2019 Philippine MO, 3

Find all triples $(a, b, c)$ of positive integers such that $a^2 + b^2 = n\cdot lcm(a, b) + n^2$ $b^2 + c^2 = n \cdot lcm(b, c) + n^2$ $c^2 + a^2 = n \cdot lcm(c, a) + n^2$ for some positive integer $n$.

2008 China Team Selection Test, 3

Find all positive integers $ n$ having the following properties:in two-dimensional Cartesian coordinates, there exists a convex $ n$ lattice polygon whose lengths of all sides are odd numbers, and unequal to each other. (where lattice polygon is defined as polygon whose coordinates of all vertices are integers in Cartesian coordinates.)

1993 Iran MO (3rd Round), 4

Prove that there exists a subset $S$ of positive integers such that we can represent each positive integer as difference of two elements of $S$ in exactly one way.

2010 Contests, 1

Solve in the integers the diophantine equation $$x^4-6x^2+1 = 7 \cdot 2^y.$$

2018 Thailand TSTST, 3

Find all pairs of integers $m, n \geq 2$ such that $$n\mid 1+m^{3^n}+m^{2\cdot 3^n}.$$

2024 Malaysian IMO Training Camp, 1

Let $a_1<a_2< \cdots$ be a strictly increasing sequence of positive integers. Suppose there exist $N$ such that for all $n>N$, $$a_{n+1}\mid a_1+a_2+\cdots+a_n$$ Prove that there exist $M$ such that $a_{m+1}=2a_m$ for all $m>M$. [i]Proposed by Ivan Chan Kai Chin[/i]

2020 BMT Fall, 5

Let $P$ be the probability that the product of $2020$ real numbers chosen independently and uniformly at random from the interval $[-1, 2]$ is positive. The value of $2P - 1$ can be written in the form $\left(\frac{m}{n} \right)^b$, where $m$, $n$ and $b$ are positive integers such that $m$ and $n$ are relatively prime and $b$ is as large as possible. Compute $m + n + b$.

2016 Abels Math Contest (Norwegian MO) Final, 2b

Find all non-negative integers $x, y$ and $z$ such that $x^3 + 2y^3 + 4z^3 = 9!$