This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2018 Polish Junior MO Second Round, 3

Determine all trios of integers $(x, y, z)$ which are solution of system of equations $\begin{cases} x - yz = 1 \\ xz + y = 2 \end{cases}$

2022 MOAA, 14

Find the greatest prime number $p$ for which there exists a prime number $q$ such that $p$ divides $4^q + 1$ and $q$ divides $4^p + 1$.

ABMC Online Contests, 2021 Oct

[b]p1.[/b] How many perfect squares are in the set: $\{1, 2, 4, 9, 10, 16, 17, 25, 36, 49\}$? [b]p2.[/b] If $a \spadesuit b = a^b - ab - 5$, what is the value of $2 \spadesuit 11$? [b]p3.[/b] Joe can catch $20$ fish in $5$ hours. Jill can catch $35$ fish in $7$ hours. If they work together, and the number of days it takes them to catch $900$ fish is represented by $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, what is $m + n$? Assume that they work at a constant rate without taking breaks and that there are an infinite number of fish to catch. [b]p4.[/b] What is the units digit of $187^{10}$? [b]p5.[/b] What is the largest number of regions we can create by drawing $4$ lines in a plane? [b]p6.[/b] A regular hexagon is inscribed in a circle. If the area of the circle is $2025\pi$, given that the area of the hexagon can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any number other than $1$, find $a + b + c$. [b]p7.[/b] Find the number of trailing zeroes in the product $3! \cdot 5! \cdot 719!$. [b]p8.[/b] How many ordered triples $(x, y, z)$ of odd positive integers satisfy $x + y + z = 37$? [b]p9.[/b] Let $N$ be a number with $2021$ digits that has a remainder of $1$ when divided by $9$. $S(N)$ is the sum of the digits of $N$. What is the value of $S(S(S(S(N))))$? [b]p10.[/b] Ayana rolls a standard die $10$ times. If the probability that the sum of the $10$ die is divisible by $6$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$, what is $m + n$? [b]p11.[/b] In triangle $ABC$, $AB=13$, $BC=14$, and $CA=15$. The inscribed circle touches the side $BC$ at point $D$. The line $AI$ intersects side $BC$ at point $K$ given that $I$ is the incenter of triangle $ABC$. What is the area of the triangle $KID$? [b]p12.[/b] Given the cubic equation $2x^3+8x^2-42x-188$, with roots $a, b, c$, evaluate $|a^2b+a^2c+ab^2+b^2c+c^2a+bc^2|$. [b]p13.[/b] In tetrahedron $ABCD$, $AB=6$, $BC=8$, $CA=10$, and $DA$, $DB$, $DC=20$. If the volume of $ABCD$ is $a\sqrt{b}$ where $a$, $b$ are positive integers and in simplified radical form, what is $a + b$? [b]p14.[/b] A $2021$-digit number starts with the four digits $2021$ and the rest of the digits are randomly chosen from the set $0$,$1$,$2$,$3$,$4$,$5$,$6$. If the probability that the number is divisible by $14$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. what is $m + n$? [b]p15.[/b] Let $ABCD$ be a cyclic quadrilateral with circumcenter $O_1$ and circumradius $20$, Let the intersection of $AC$ and $BD$ be $E$. Let the circumcenter of $\vartriangle EDC$ be $O_2$. Given that the circumradius of 4EDC is $13$; $O_1O_2 = 11$, $BE = 11 \sqrt2$, find $O_1E^2$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Malaysian IMO Training Camp, 4

Do there exist infinitely many triples of positive integers $(a, b, c)$ such that $a$, $b$, $c$ are pairwise coprime, and $a! + b! + c!$ is divisible by $a^2 + b^2 + c^2$? [i]Proposed by Anzo Teh Zhao Yang[/i]

1984 USAMO, 2

The geometric mean of any set of $m$ non-negative numbers is the $m$-th root of their product. $\quad (\text{i})\quad$ For which positive integers $n$ is there a finite set $S_n$ of $n$ distinct positive integers such that the geometric mean of any subset of $S_n$ is an integer? $\quad (\text{ii})\quad$ Is there an infinite set $S$ of distinct positive integers such that the geometric mean of any finite subset of $S$ is an integer?

2023 Philippine MO, 7

A set of positive integers is said to be [i]pilak[/i] if it can be partitioned into 2 disjoint subsets $F$ and $T$, each with at least $2$ elements, such that the elements of $F$ are consecutive Fibonacci numbers, and the elements of $T$ are consecutive triangular numbers. Find all positive integers $n$ such that the set containing all the positive divisors of $n$ except $n$ itself is pilak.

2010 Baltic Way, 20

Determine all positive integers $n$ for which there exists an infinite subset $A$ of the set $\mathbb{N}$ of positive integers such that for all pairwise distinct $a_1,\ldots , a_n \in A$ the numbers $a_1+\ldots +a_n$ and $a_1a_2\ldots a_n$ are coprime.

2019 Durer Math Competition Finals, 11

What is the smallest $N$ for which $\sum_{k=1}^{N} k^{2018}$ is divisible by $2018$?

2013 Germany Team Selection Test, 2

Call admissible a set $A$ of integers that has the following property: If $x,y \in A$ (possibly $x=y$) then $x^2+kxy+y^2 \in A$ for every integer $k$. Determine all pairs $m,n$ of nonzero integers such that the only admissible set containing both $m$ and $n$ is the set of all integers. [i]Proposed by Warut Suksompong, Thailand[/i]

2008 Postal Coaching, 3

Prove that there exists an in nite sequence $<a_n>$ of positive integers such that for each $k \ge 1$ $(a_1 - 1)(a_2 - 1)(a_3 -1)...(a_k - 1)$ divides $a_1a_2a_3 ...a_k + 1$.

MBMT Guts Rounds, 2022

[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide] [u]Set 1[/u] [b]D1 / Z1.[/b] What is $1 + 2 \cdot 3$? [b]D2.[/b] What is the average of the first $9$ positive integers? [b]D3 / Z2.[/b] A square of side length $2$ is cut into $4$ congruent squares. What is the perimeter of one of the $4$ squares? [b]D4.[/b] Find the ratio of a circle’s circumference squared to the area of the circle. [b]D5 / Z3.[/b] $6$ people split a bag of cookies such that they each get $21$ cookies. Kyle comes and demands his share of cookies. If the $7$ people then re-split the cookies equally, how many cookies does Kyle get? [u]Set 2[/u] [b]D6.[/b] How many prime numbers are perfect squares? [b]D7.[/b] Josh has an unfair $4$-sided die numbered $1$ through $4$. The probability it lands on an even number is twice the probability it lands on an odd number. What is the probability it lands on either $1$ or $3$? [b]D8.[/b] If Alice consumes $1000$ calories every day and burns $500$ every night, how many days will it take for her to first reach a net gain of $5000$ calories? [b]D9 / Z4.[/b] Blobby flips $4$ coins. What is the probability he sees at least one heads and one tails? [b]D10.[/b] Lillian has $n$ jars and $48$ marbles. If George steals one jar from Lillian, she can fill each jar with $8$ marbles. If George steals $3$ jars, Lillian can fill each jar to maximum capacity. How many marbles can each jar fill? [u]Set 3[/u] [b]D11 / Z6.[/b] How many perfect squares less than $100$ are odd? [b]D12.[/b] Jash and Nash wash cars for cash. Jash gets $\$6$ for each car, while Nash gets $\$11$ per car. If Nash has earned $\$1$ more than Jash, what is the least amount of money that Nash could have earned? [b]D13 / Z5.[/b] The product of $10$ consecutive positive integers ends in $3$ zeros. What is the minimum possible value of the smallest of the $10$ integers? [b]D14 / Z7.[/b] Guuce continually rolls a fair $6$-sided dice until he rolls a $1$ or a $6$. He wins if he rolls a $6$, and loses if he rolls a $1$. What is the probability that Guuce wins? [b]D15 / Z8.[/b] The perimeter and area of a square with integer side lengths are both three digit integers. How many possible values are there for the side length of the square? PS. You should use hide for answers. D.16-30/Z.9-14, 17, 26-30 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916250p26045695]here [/url]and Z.15-25 [url=https://artofproblemsolving.com/community/c3h2916258p26045774]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Irish Math Olympiad, 5

Suppose $p,q$ are distinct primes and $S$ is a subset of $\{1,2,\dots ,p-1\}$. Let $N(S)$ denote the number of solutions to the equation $$\sum_{i=1}^{q}x_i\equiv 0\mod p$$ where $x_i\in S$, $i=1,2,\dots ,q$. Prove that $N(S)$ is a multiple of $q$.

2015 Indonesia MO Shortlist, N7

For every natural number $a$ and $b$, define the notation $[a,b]$ as the least common multiple of $a $ and $b$ and the notation $(a,b)$ as the greatest common divisor of $a$ and $b$. Find all $n \in \mathbb{N}$ that satisfies \[ 4 \sum_{k=1}^{n} [n,k] = 1 + \sum_{k=1}^{n} (n,k) + 2n^2 \sum_{k=1}^{n} \frac{1}{(n,k)} \]

2018 CMI B.Sc. Entrance Exam, 1

Answer the following questions : $\textbf{(a)}~$ A natural number $k$ is called stable if there exist $k$ distinct natural numbers $a_1, a_2,\cdots, a_k$, each $a_i>1$, such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_k}=1$$ Show that if $k$ is stable, then $(k+1)$ is also stable. Using this or otherwise, find all stable numbers. $\textbf{(b)}$ Let $f$ be a differentiable function defined on a subset $A$ of the real numbers. Define $$f^*(y):=\max_{x\in A} \left\{yx-f(x)\right\}$$ whenever the above maximum is finite. For the function $f(x)=\ln x$, determine the set of points for which $f^*$ is defined and find an expression for $f^*(y)$ involving only $y$ and constants.

2016 Romania Team Selection Test, 1

Determine the positive integers expressible in the form $\frac{x^2+y}{xy+1}$, for at least $2$ pairs $(x,y)$ of positive integers

1993 Spain Mathematical Olympiad, 4

Prove that for each prime number distinct from $2$ and $5$ there exist infinitely many multiples of $p$ of the form $1111...1$.

2022 IFYM, Sozopol, 5

Find the number of subsets of $\{1, 2,... , 2100\}$ such that each has sum of the elements giving a remainder of $3$ when divided by $7$.

2022 Estonia Team Selection Test, 2

Let $d_i$ be the first decimal digit of $2^i$ for every non-negative integer $i$. Prove that for each positive integer $n$ there exists a decimal digit other than $0$ which can be found in the sequence $d_0, d_1, \dots, d_{n-1}$ strictly less than $\frac{n}{17}$ times.

2022 Bulgaria National Olympiad, 5

Let $ABC$ be an isosceles triangle with $AB=4$, $BC=CA=6$. On the segment $AB$ consecutively lie points $X_{1},X_{2},X_{3},\ldots$ such that the lengths of the segments $AX_{1},X_{1}X_{2},X_{2}X_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{4}$. On the segment $CB$ consecutively lie points $Y_{1},Y_{2},Y_{3},\ldots$ such that the lengths of the segments $CY_{1},Y_{1}Y_{2},Y_{2}Y_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. On the segment $AC$ consecutively lie points $Z_{1},Z_{2},Z_{3},\ldots$ such that the lengths of the segments $AZ_{1},Z_{1}Z_{2},Z_{2}Z_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. Find all triplets of positive integers $(a,b,c)$ such that the segments $AY_{a}$, $BZ_{b}$ and $CX_{c}$ are concurrent.

2020 ABMC, 2020 Nov

[b]p1.[/b] A large square is cut into four smaller, congruent squares. If each of the smaller squares has perimeter $4$, what was the perimeter of the original square? [b]p2.[/b] Pie loves to bake apples so much that he spends $24$ hours a day baking them. If Pie bakes a dozen apples in one day, how many minutes does it take Pie to bake one apple, on average? [b]p3.[/b] Bames Jond is sent to spy on James Pond. One day, Bames sees James type in his $4$-digit phone password. Bames remembers that James used the digits $0$, $5$, and $9$, and no other digits, but he does not remember the order. How many possible phone passwords satisfy this condition? [b]p4.[/b] What do you get if you square the answer to this question, add $256$ to it, and then divide by $32$? [b]p5.[/b] Chloe the Horse and Flower the Chicken are best friends. When Chloe gets sad for any reason, she calls Flower, so Chloe must remember Flower's $3$ digit phone number, which can consist of any digits $0-5$. Given that the phone number's digits are unique and add to $5$, the number does not start with $0$, and the $3$ digit number is prime, what is the sum of all possible phone numbers? [b]p6.[/b] Anuj has a circular pizza with diameter $A$ inches, which is cut into $B$ congruent slices, where $A$,$B$ are positive integers. If one of Anuj's pizza slices has a perimeter of $3\pi + 30$ inches, find $A + B$. [b]p7.[/b] Bob really likes to study math. Unfortunately, he gets easily distracted by messages sent by friends. At the beginning of every minute, there is an $\frac{6}{10}$ chance that he will get a message from a friend. If Bob does get a message from a friend, there is a $\frac{9}{10}$ chance that he will look at the message, causing him to waste $30$ seconds before resuming his studying. If Bob doesn't get a message from a friend, there is a $\frac{3}{10}$ chance Bob will still check his messages hoping for a message from his friends, wasting $10$ seconds before he resumes his studying. What is the expected number of minutes in $100$ minutes for which Bob will be studying math? [b]p8.[/b] Suppose there is a positive integer $n$ with $225$ distinct positive integer divisors. What is the minimum possible number of divisors of n that are perfect squares? [b]p9.[/b] Let $a, b, c$ be positive integers. $a$ has $12$ divisors, $b$ has $8$ divisors, $c$ has $6$ divisors, and $lcm(a, b, c) = abc$. Let $d$ be the number of divisors of $a^2bc$. Find the sum of all possible values of $d$. [b]p10.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 17$, $BC = 28$, $AC = 25$. Let the altitude from $A$ to $BC$ and the angle bisector of angle $B$ meet at $P$. Given the length of $BP$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a + b + c$. [b]p11.[/b] Let $a$, $b$, and $c$ be the roots of the cubic equation $x^3-5x+3 = 0$. Let $S = a^4b+ab^4+a^4c+ac^4+b^4c+bc^4$. Find $|S|$. [b]p12.[/b] Call a number palindromeish if changing a single digit of the number into a different digit results in a new six-digit palindrome. For example, the number $110012$ is a palindromeish number since you can change the last digit into a $1$, which results in the palindrome $110011$. Find the number of $6$ digit palindromeish numbers. [b]p13.[/b] Let $P(x)$ be a polynomial of degree $3$ with real coecients and leading coecient $1$. Let the roots of $P(x)$ be $a$, $b$, $c$. Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}= 4$ and $a^2 + b^2 + c^2 = 36$, the coefficient of $x^2$ is negative, and $P(1) = 2$, let the $S$ be the sum of possible values of $P(0)$. Then $|S|$ can be expressed as $\frac{a + b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ such that $gcd(a, b, d) = 1$ and $c$ is not divisible by the square of any prime. Find $a + b + c + d$. [b]p14.[/b] Let $ABC$ be a triangle with side lengths $AB = 7$, $BC = 8$, $AC = 9$. Draw a circle tangent to $AB$ at $B$ and passing through $C$. Let the center of the circle be $O$. The length of $AO$ can be expressed as $\frac{a\sqrt{b}}{c\sqrt{d}}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c) = gcd(b, d) = 1$ and $b$,$ d$ are not divisible by the square of any prime. Find $a + b + c + d$. [b]p15.[/b] Many students in Mr. Noeth's BC Calculus class missed their first test, and to avoid taking a makeup, have decided to never leave their houses again. As a result, Mr. Noeth decides that he will have to visit their houses to deliver the makeup tests. Conveniently, the $17$ absent students in his class live in consecutive houses on the same street. Mr. Noeth chooses at least three of every four people in consecutive houses to take a makeup. How many ways can Mr. Noeth select students to take makeups? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 ELMO Shortlist, 7

Find all triples $(a,b,c)$ of positive integers such that if $n$ is not divisible by any prime less than $2014$, then $n+c$ divides $a^n+b^n+n$. [i]Proposed by Evan Chen[/i]

2002 Denmark MO - Mohr Contest, 3

Two positive integers have the sum $2002$. Can $2002$ divide their product?

1979 Bundeswettbewerb Mathematik, 4

An infinite sequence $p_1, p_2, p_3, \ldots$ of natural numbers in the decimal system has the following property: For every $i \in \mathbb{N}$ the last digit of $p_{i+1}$ is different from $9$, and by omitting this digit one obtains number $p_i$. Prove that this sequence contains infinitely many composite numbers.

2002 China Girls Math Olympiad, 6

Find all pairs of positive integers $ (x,y)$ such that \[ x^y \equal{} y^{x \minus{} y}. \] [i]Albania[/i]

2019 Switzerland Team Selection Test, 8

Let $k,n,r$ be positive integers and $r<n$. Quirin owns $kn+r$ black and $kn+r$ white socks. He want to clean his cloths closet such there does not exist $2n$ consecutive socks $n$ of which black and the other $n$ white. Prove that he can clean his closet in the desired manner if and only if $r\geq k$ and $n>k+r$.