This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

2021 Sharygin Geometry Olympiad, 8.8

Does there exist a convex polygon such that all its sidelengths are equal and all triangle formed by its vertices are obtuse-angled?

1966 IMO Longlists, 41

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?

2010 IMAC Arhimede, 5

Different points $A_1, A_2,..., A_n$ in the plane ($n> 3$) are such that the triangle $A_iA_jA_k$ is obtuse for all the different $i,j,k \in\{1,2,...,n\}$. Prove that there is a point $A_{n + 1}$ in the plane, such that the triangle $A_iA_jA_{n + 1}$ is obtuse for all different $i,j \in\{1,2,...,n\}$

May Olympiad L1 - geometry, 2019.4

You have to divide a square paper into three parts, by two straight cuts, so that by locating these parts properly, without gaps or overlaps, an obtuse triangle is formed. Indicate how to cut the square and how to assemble the triangle with the three parts.

2010 Saudi Arabia IMO TST, 1

Let $A_1A_2...A_{2010}$ be a regular $2010$-gon. Find the number of obtuse triangles whose vertices are among $A_1$, $A_2$,$ ...$, $A_{2010}$.

1966 IMO Shortlist, 41

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?

2019 May Olympiad, 4

You have to divide a square paper into three parts, by two straight cuts, so that by locating these parts properly, without gaps or overlaps, an obtuse triangle is formed. Indicate how to cut the square and how to assemble the triangle with the three parts.

2008 Bulgarian Autumn Math Competition, Problem 8.4

Let $M$ be a set of $99$ different rays with a common end point in a plane. It's known that two of those rays form an obtuse angle, which has no other rays of $M$ inside in. What is the maximum number of obtuse angles formed by two rays in $M$?

2015 Thailand Mathematical Olympiad, 4

Let $\vartriangle ABC$ be a triangle with an obtuse angle $\angle ACB$. The incircle of $\vartriangle ABC$ centered at $I$ is tangent to the sides $AB, BC, CA$ at $D, E, F$ respectively. Lines $AI$ and $BI$ intersect $EF$ at $M$ and $N$ respectively. Let $G$ be the midpoint of $AB$. Show that $M, N, G, D$ lie on a circle.

1967 German National Olympiad, 4

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?