This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 253

2013 Today's Calculation Of Integral, 895

In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.

1998 Tuymaada Olympiad, 5

A right triangle is inscribed in parabola $y=x^2$. Prove that it's hypotenuse is not less than $2$.

2018 Caucasus Mathematical Olympiad, 6

Two graphs $G_1$ and $G_2$ of quadratic polynomials intersect at points $A$ and $B$. Let $O$ be the vertex of $G_1$. Lines $OA$ and $OB$ intersect $G_2$ again at points $C$ and $D$. Prove that $CD$ is parallel to the $x$-axis.

1982 IMO Longlists, 56

Let $f(x) = ax^2 + bx+ c$ and $g(x) = cx^2 + bx + a$. If $|f(0)| \leq 1, |f(1)| \leq 1, |f(-1)| \leq 1$, prove that for $|x| \leq 1$, [b](a)[/b] $|f(x)| \leq 5/4$, [b](b)[/b] $|g(x)| \leq 2$.

2014 HMNT, 10

Let $z$ be a complex number and k a positive integer such that $z^k$ is a positive real number other than $1$. Let $f(n)$ denote the real part of the complex number $z^n$. Assume the parabola $p(n) = an^2 +bn+c$ intersects $f(n)$ four times, at $n = 0, 1, 2, 3$. Assuming the smallest possible value of $k$, find the largest possible value of $a$.

2022 Belarusian National Olympiad, 10.3

Through the point $F(0,\frac{1}{4})$ of the coordinate plane two perpendicular lines pass, that intersect parabola $y=x^2$ at points $A,B,C,D$ ($A_x<B_x<C_x<D_x$) The difference of projections of segments $AD$ and $BC$ onto the $Ox$ line is $m$ Find the area of $ABCD$

2014 AMC 12/AHSME, 17

Let $P$ be the parabola with equation $y = x^2$ and let $Q = (20, 14)$ There are real numbers $r$ and $s$ such that the line through $Q$ with slope $m$ does not intersect $P$ if and only if $r < m < s$. What is $r + s?$ $ \textbf{(A)} 1 \qquad \textbf{(B)} 26 \qquad \textbf{(C)} 40 \qquad \textbf{(D)} 52 \qquad \textbf{(E)} 80 \qquad $

2016 AMC 12/AHSME, 6

Tags: conic , parabola
All three vertices of $\bigtriangleup ABC$ lie on the parabola defined by $y=x^2$, with $A$ at the origin and $\overline{BC}$ parallel to the $x$-axis. The area of the triangle is $64$. What is the length of $BC$? $\textbf{(A)}\ 4\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 16$

2013 Princeton University Math Competition, 3

The area of a circle centered at the origin, which is inscribed in the parabola $y=x^2-25$, can be expressed as $\tfrac ab\pi$, where $a$ and $b$ are coprime positive integers. What is the value of $a+b$?

1954 AMC 12/AHSME, 42

Consider the graphs of (1): $ y\equal{}x^2\minus{}\frac{1}{2}x\plus{}2$ and (2) $ y\equal{}x^2\plus{}\frac{1}{2}x\plus{}2$ on the same set of axis. These parabolas are exactly the same shape. Then: $ \textbf{(A)}\ \text{the graphs coincide.} \\ \textbf{(B)}\ \text{the graph of (1) is lower than the graph of (2).} \\ \textbf{(C)}\ \text{the graph of (1) is to the left of the graph of (2).} \\ \textbf{(D)}\ \text{the graph of (1) is to the right of the graph of (2).} \\ \textbf{(E)}\ \text{the graph of (1) is higher than the graph of (2).}$

1998 AMC 12/AHSME, 14

A parabola has vertex at $(4,-5)$ and has two $x$-intercepts, one positive and one negative. If this parabola is the graph of $y = ax^2 + bx + c$, which of $a$, $b$, and $c$ must be positive? $ \textbf{(A)}\ \text{Only }a\qquad \textbf{(B)}\ \text{Only }b\qquad \textbf{(C)}\ \text{Only }c\qquad \textbf{(D)}\ \text{Only }a\text{ and }b\qquad \textbf{(E)}\ \text{None}$

2009 Today's Calculation Of Integral, 472

Given a line segment $ PQ$ moving on the parabola $ y \equal{} x^2$ with end points on the parabola. The area of the figure surrounded by $ PQ$ and the parabola is always equal to $ \frac {4}{3}$. Find the equation of the locus of the mid point $ M$ of $ PQ$.

2003 National High School Mathematics League, 3

Line passes the focal point $F$ of parabola $y^2=8(x+2)$ with bank angle of $60^{\circ}$ intersects the parabola at $A,B$. Perpendicular bisector of $AB$ intersects $x$-axis at $P$, then the length of $PF$ is $\text{(A)}\frac{16}{3}\qquad\text{(B)}\frac{8}{3}\qquad\text{(C)}\frac{16}{3}\sqrt3\qquad\text{(D)}8\sqrt3$

2010 BMO TST, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

2010 ELMO Shortlist, 3

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$. [i]Evan O' Dorney.[/i]

1959 AMC 12/AHSME, 8

The value of $x^2-6x+13$ can never be less than: $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 4.5 \qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 13 $

1999 Turkey Team Selection Test, 3

Prove that the plane is not a union of the inner regions of finitely many parabolas. (The outer region of a parabola is the union of the lines not intersecting the parabola. The inner region of a parabola is the set of points of the plane that do not belong to the outer region of the parabola)

1999 Federal Competition For Advanced Students, Part 2, 3

Find all pairs $(x, y)$ of real numbers such that \[y^2 - [x]^2 = 19.99 \text{ and } x^2 + [y]^2 = 1999\] where $f(x)=[x]$ is the floor function.

1957 AMC 12/AHSME, 10

The graph of $ y \equal{} 2x^2 \plus{} 4x \plus{} 3$ has its: $ \textbf{(A)}\ \text{lowest point at } {(\minus{}1,9)}\qquad \textbf{(B)}\ \text{lowest point at } {(1,1)}\qquad \\ \textbf{(C)}\ \text{lowest point at } {(\minus{}1,1)}\qquad \textbf{(D)}\ \text{highest point at } {(\minus{}1,9)}\qquad \\ \textbf{(E)}\ \text{highest point at } {(\minus{}1,1)}$

2009 Today's Calculation Of Integral, 419

In the $ xy$ plane, the line $ l$ touches to 2 parabolas $ y\equal{}x^2\plus{}ax,\ y\equal{}x^2\minus{}2ax$, where $ a$ is positive constant. (1) Find the equation of $ l$. (2) Find the area $ S$ bounded by the parabolas and the tangent line $ l$.

1954 Putnam, B4

Given the focus $F$ and the directrix $D$ of a parabola $P$ and a line $L$, describe a euclidean construction for the point or points of intersection of $P$ and $L.$ Be sure to identify the case for which there are no points of intersection.

1993 National High School Mathematics League, 14

Tags: conic , parabola
If $0<a<b$, given two fixed points $A(a,0),B(b,0)$. Draw lines $l$ passes $A$, $m$ passes $B$. They have four different intersections with parabola $y^2=x$. If the four points are concyclic, find the path of $P(P=l\cap m)$.

2022 Saint Petersburg Mathematical Olympiad, 4

Tags: parabola , algebra
We will say that a point of the plane $(u, v)$ lies between the parabolas $y = f(x)$ and $y = g(x)$ if $f(u) \leq v \leq g(u)$. Find the smallest real $p$ for which the following statement is true: for any segment, the ends and the midpoint of which lie between the parabolas $y = x^2$ and $y=x^2+1$, then they lie entirely between the parabolas $y=x^2$ and $y=x^2+p$.

2011 China Second Round Olympiad, 7

The line $x-2y-1=0$ insects the parabola $y^2=4x$ at two different points $A, B$. Let $C$ be a point on the parabola such that $\angle ACB=\frac{\pi}{2}$. Find the coordinate of point $C$.

2010 Today's Calculation Of Integral, 552

Find the positive value of $ a$ such that the curve $ C_1: x \equal{} \sqrt {2y^2 \plus{} \frac {25}{2}}$ tangent to the parabola $ C_2: y \equal{} ax^2$, then find the equation of the tangent line of $ C_1$ at the point of tangency.